Interpolation and Exponentially Suppressed Cosmological Constant in Non-Supersymmetric Heterotic Strings with General Z₂ Twists

YK. arXiv:2212.14572

2023/03/17 素粒子現象論研究会2022 @ 大阪公立大学

Introduction

- 加速器実験
- ⇒ 到達可能なエネルギースケールではSUSYの証拠なし
- String/Planck scale 程度の高エネルギー領域で
 既にSUSYが破れている可能性
 - ➡ 非超対称な弦理論 (Non-SUSY string) に注目

Introduction

・10 次元の弦理論 (with modular invariance):

(Strings with SUSY) < # (Strings without SUSY)</pre>

 Non-SUSY "Heterotic" string theoryに焦点を当てる (後述)

Introduction

▶Non-SUSY stringの問題点:宇宙定数が極めて大きくなる

- $n_F = n_B \Rightarrow$ 指数関数的に抑圧された宇宙定数をもつ
- しかしモジュライ不安定性の問題(最小値negative等)があった
- 構成法:1方向に対してのみ Z₂ Scherk-Schwarz twists

<u>任意の次元数</u>に対して Z_2 twists して得られる模型を調べた

- 1. Introduction
- 2. Non-SUSY Hetero with general Z₂ twists
- 3. Endpoint limits & Interpolations
- 4. Cosmological Constant
- 5. Summary

- 1. Introduction
- 2. Non-SUSY Hetero with general Z_2 twists
- 3. Endpoint limits & Interpolations
- 4. Cosmological Constant
- 5. Summary

Heterotic Superstring

>Hybrid("heterotic") theory including only closed strings:

- Left: bosonic string (26D)
- Right: superstring (10D)
- >Compactified on T^d (with maximal SUSY)

• $X_{L,R}^{\mu}, X_{L,R}^{I,i} / \psi_R^{\mu,i}$: bosonic / fermionic coordinates $(\mu = 0, ..., 9 - d, i = 10 - d, ..., 9, I = 1, ..., 16)$

Heterotic Superstring

≻ The internal momenta $P = (\ell_L, p_L; p_R) \in \Gamma^{16+d,d}$

- Narain lattice: even self-dual lattice w/ Lorentz. sign. (16 + d, d)
- Labeled by an integer vector $Z = (q^{I}, \underline{m}^{i}, \underline{n}_{i}) \in Z^{16} \times Z^{d} \times Z^{d}$ winding numbers KK momenta
- Turn on full moduli: $d(d + 16) = d^2 + 16d \Rightarrow (G_{ij} + B_{ij}) + A_i^l$
- Consider a rectangular *d*-torus: $G_{ij} = R_i^2 \delta_{ij}$

Narain, Sarmadi, Witten, (1986)

$$\begin{cases} \ell_L^I = \pi^I - m^i A_i^I, \\ p_{Li} = \frac{1}{\sqrt{2}R_i} \left(\pi \cdot A_i + n_i + m^j \left(G_{ij} + B_{ij} - \frac{1}{2}A_i \cdot A_j \right) \right) \\ p_{Ri} = \frac{1}{\sqrt{2}R_i} \left(\pi \cdot A_i + n_i - m^j \left(G_{ij} - B_{ij} + \frac{1}{2}A_i \cdot A_j \right) \right) \end{cases}$$

 $\pi^{I} \equiv q^{I} \alpha_{16} \in \underline{\Gamma^{16}} \leftarrow Spin(32)/\mathbb{Z}_{2} \text{ or } E_{8} \times E_{8} \text{ lattice}$

Construction of Non-SUSY Hetero

Dixon, Harvey (1986) Ginsparg, Vafa (1987)

- $> Z_2$ freely acting orbifold (stringy Scherk-Schwarz comp.)
 - Project out SUSY hetero on T^d by $\frac{1+(-)^F \alpha}{2}$ (+ twisted sec. added)

 $Z_2 \text{ generator}: (-)^F \alpha \quad \begin{cases} F: \text{ spacetime fermion } \#\\ \alpha: \text{ shift of order 2 such as } \alpha |P\rangle = e^{2\pi i P \cdot \delta} |P\rangle \end{cases}$

- δ is called a shift vector : $2\delta \in \Gamma^{16+d,d}$
 - labeled by a vector $\hat{Z} = (\hat{q}^{I}, \hat{m}^{i}, \hat{n}_{i})$ whose components are <u>0 or 1</u> Non-SUSY strings depend on \hat{Z}
 - Splitting the Narain lattice $\Gamma^{16+d,d}$ into $\Gamma^{16+d,d}_+$ and $\Gamma^{16+d,d}_-$:

 $\Gamma_{+}^{16+d,d} = \left\{ P \in \Gamma^{16+d,d} \mid \delta \cdot P \in \mathbb{Z} \right\}$ $\Gamma_{-}^{16+d,d} = \left\{ P \in \Gamma^{16+d,d} \mid \delta \cdot P \in \mathbb{Z} + 1/2 \right\}$ $\Rightarrow \alpha \mid P \rangle = \begin{cases} + \mid P \rangle & \text{for } P \in \Gamma_{+}^{16+d,d} \\ - \mid P \rangle & \text{for } P \in \Gamma_{-}^{16+d,d} \end{cases}$

Boson/Fermion lives in $\Gamma_{+}^{16+d,d} / \Gamma_{-}^{16+d,d}$ respectively \longrightarrow SUSY breaking

1-loop Partition Function

- Non-SUSY Heterotic strings

$$Z_{(\hat{Z})}^{SUSY} = Z_B^{(8-d)} \left\{ \underbrace{\bar{V}_8 Z_{\Gamma_{+}^{16+d,d}}}_{\text{vector}} - \underbrace{\bar{S}_8 Z_{\Gamma_{-}^{16+d,d}}}_{\text{spinor}} + \underbrace{\bar{O}_8 Z_{\Gamma_{\pm}^{16+d,d}+\delta}}_{\text{scalar}} - \underbrace{\bar{C}_8 Z_{\Gamma_{\mp}^{16+d,d}+\delta}}_{\text{co-spinor}} \right\}$$

- 1. Introduction
- 2. Non-SUSY Hetero with general Z₂ twists

3. Endpoint limits & Interpolations

- 4. Cosmological Constant
- 5. Summary

Endpoint limits & Interpolations

Consider d = 1,2 cases with A = B = 0

• 1-loop partition function:

$$Z_{(\hat{Z})}^{SUSY} = Z_B^{(8-d)} \left\{ \bar{V}_8 \underline{Z_{\Gamma_{\pm}^{16+d,d}}} - \bar{S}_8 \underline{Z_{\Gamma_{\pm}^{16+d,d}}} + \bar{O}_8 \underline{Z_{\Gamma_{\pm}^{16+d,d}+\delta}} - \bar{C}_8 \underline{Z_{\Gamma_{\mp}^{16+d,d}+\delta}} \right\}$$

- The behavior of $Z_{\Gamma_{\pm}^{16+d,d}(+\delta)}$ in the limits of $R_i \to 0, \infty$
 - Take $R_i \rightarrow \infty \Rightarrow$ only $m^i = 0$ contributes
 - Take $R_i \rightarrow 0 \Rightarrow$ only $n_i = 0$ contributes

 $\begin{aligned} & \underline{\text{Example in } d = 1 \text{ with } (\hat{m}^{1}, \hat{n}_{1}) = (1,0):} \\ & Z_{\Gamma_{\pm}^{17,1}} \xrightarrow{R_{1} \to \infty} \frac{R_{1}}{\sqrt{\tau_{2}}} (\eta \bar{\eta})^{-1} Z_{\Gamma^{16}}, \quad Z_{\Gamma_{\pm}^{17,1} + \delta} \xrightarrow{R_{1} \to \infty} 0, \qquad \text{SUSY} \\ & Z_{\Gamma_{\pm}^{17,1}} \xrightarrow{R_{1} \to 0} \frac{1}{R_{1}\sqrt{\tau_{2}}} (\eta \bar{\eta})^{-1} Z_{\Gamma_{\pm}^{16}}, \quad Z_{\Gamma_{\pm}^{17,1} + \delta} \xrightarrow{R_{1} \to 0} \frac{1}{R_{1}\sqrt{\tau_{2}}} (\eta \bar{\eta})^{-1} Z_{\Gamma_{\pm}^{16} + \frac{\hat{\pi}}{2}}. \quad \text{Non-SUSY} \end{aligned}$

Endpoint limits & Interpolations

• 9D Non-SUSY heterotic models (d = 1)

Itoyama, Koga, Nkajima (2021)

Endpoint limits & Interpolations

• 8D Non-SUSY heterotic models (d = 2)

Limits of R_1, R_2	10D SUSY model	10D Non-SUSY model
$(R_1, R_2) \to (\infty, \infty)$	$\hat{m}^1 + \hat{m}^2 > 0$	$\hat{m}^1 + \hat{m}^2 = 0$
$(R_1, R_2) \to (\infty, 0)$	$\hat{m}^1 + \hat{n}_2 > 0$	$\hat{m}^1 + \hat{n}_2 = 0$
$(R_1, R_2) \to (0, \infty)$	$\hat{n}_1 + \hat{m}^2 > 0$	$\hat{n}_1 + \hat{m}^2 = 0$
$(R_1, R_2) \to (0, 0)$	$\hat{n}_1 + \hat{n}_2 > 0$	$\hat{n}_1 + \hat{n}_2 = 0$

10D (Non-)SUSY condition Koga (2022)

- 1. Introduction
- 2. Non-SUSY Hetero with general Z₂ twists
- 3. Endpoint limits & Interpolations
- 4. Cosmological Constant
- 5. Summary

Cosmological Constant

• 1-loop cosmological constant (vacuum energy density) :

$$\Lambda^{(10-d)} = -\frac{1}{2} (2\pi\sqrt{\alpha'})^{-(10-d)} \int_{\mathcal{F}} \frac{d^2\tau}{\tau_2^2} Z^{SUSY}_{(\hat{Z})}$$

Fundamental Region :

$$\mathcal{F} = \left\{ \tau = \tau_1 + i\tau_2 \in \mathbb{C} \ \middle| \ -\frac{1}{2} \le \tau_1 \le \frac{1}{2}, \ |\tau| \ge 1 \right\}$$

• decompose \mathcal{F} into $\mathcal{F}_{\geq 1} = \{\tau \in \mathcal{F} | \tau_2 \geq 1\}$ and $\mathcal{F}_{<1} = \{\tau \in \mathcal{F} | \tau_2 < 1\}$

(10-d)D non-SUSY Heterotic models

• Consider compact coordinates Y^i (i = 1, ..., d) below :

• Assignment of (\hat{m}, \hat{n}) :

$$\begin{array}{c} (\hat{m}^{a_{(2)}}, \hat{n}_{a_{(2)}}) = (1, 0) & \text{for } a_{(2)} = 1, \dots, D_2 \\ (\hat{m}^{a_{(4)}}, \hat{n}_{a_{(4)}}) = (1, 1) & \text{for } a_{(4)} = D_2 + 1, \dots, D \\ (\hat{m}^{b_{(3)}}, \hat{n}_{b_{(3)}}) = (0, 1) & \text{for } b_{(3)} = D + 1, \dots, D + D_3 \\ (\hat{m}^{b_{(1)}}, \hat{n}_{b_{(1)}}) = (0, 0) & \text{for } b_{(1)} = D + D_3 + 1, \dots, d \end{array} \right\} \quad \text{Non-SUSY at } R_b \to \infty$$

Formula for CC

- Consider $D \ge 1$: SUSY is restored at all $R_i \approx \infty$
 - Up to exponentially suppressed terms,

$$\Lambda^{(10-d)} \sim -\frac{4! \cdot 2^{d-1}}{\pi^{15-d} (\sqrt{\alpha'})^{10-d}} \left(\prod_{i=1}^{d} R_i \right) \sum_{n} \left\{ \sum_{a=1}^{D} (2n_a - 1)^2 R_a^2 + \sum_{b=D+1}^{d} (2n_b)^2 R_b^2 \right\}^{-5} \times 8 \left(24 + \sum_{\pi \in \Delta_g} \exp\left[2\pi i \left\{ \sum_{a=1}^{D} (2n_a - 1)(\pi \cdot A_a) + \sum_{b=D+1}^{d} n_b(\pi \cdot A_b) \right\} \right] \right)$$

 Δ_g : nonzero roots of SO(32) or $E_8 \times E_8$ \Rightarrow CC does not depend on all the other endpoint models

massless
condition
$$\lambda^{(10-d)} \sim \frac{4! \cdot 2^{d-1}}{\pi^{15-d}} \left(\prod_{i=1}^{d} R_i \right) \sum_{\overrightarrow{n}} \left\{ \sum_a (2n_a - 1)^2 R_a^2 + \sum_b (2n_b)^2 R_b^2 \right\}^{-5} (n_F - n_B)$$
$$2\pi \cdot A_b \in \mathbb{Z}$$

Solutions of $n_F = n_B$

>SUSY SO(32) endpoint models:

 $\Delta_{SO(32)} = \left\{ \left(\underline{\pm}, \pm, 0^{14} \right) \right\}$

Simplest configurations:

- A_a^I (a = 1, ..., D) are the same configuration
- $A_b^I(b = D + 1, ..., d)$ is taken to be 0

$$A_a = \left(0^p, \left(\frac{1}{2}\right)^q\right) \ (p+q=16), \ A_b = \left(0^{16}\right)$$

• $D \in 2\mathbb{Z}$: $n_F - n_B = -504 \neq 0$

• $D \in 2\mathbb{Z} + 1$: $n_F - n_B = 4pq - \{2p(p-1) + 2q(q-1)\} - 24$ $n_F = n_B \Rightarrow (p,q) = (9,7), (7,9)$

CC is exp. supp. when gauge group is $SO(18) \times SO(14)$

Wilson-line Moduli Stability (1)

• SUSY SO(32) endpoint models:

$$\Lambda^{(10-d)} \sim -\sum_{n} C_{n} \left(24 + 4 \sum_{1 \le I < J \le 16} \cos\left[2\pi\theta^{I}\right] \cos\left[2\pi\theta^{J}\right] \right)$$
$$\int_{a=1}^{D} \theta^{I} = \sum_{a=1}^{D} (2n_{a} - 1)A_{a}^{I} + \sum_{b=D+1}^{d} n_{b}A_{b}^{I} \qquad \text{sum of WLs}$$
$$C_{n} = \frac{4! \cdot 2^{d+2}}{\pi^{15-d}(\sqrt{\alpha'})^{10-d}} \left(\prod_{i=1}^{d} R_{i}\right) \left\{ \sum_{a=1}^{D} (2n_{a} - 1)^{2}R_{a}^{2} + \sum_{b=D+1}^{d} (2n_{b})^{2}R_{b}^{2} \right\}^{-5}$$

• Simplest configurations are critical points:

$$A_a = \left(0^p, \left(\frac{1}{2}\right)^q\right) \ (p+q=16), \ A_b = (0^{16})$$

$$\frac{\partial \Lambda^{(10-d)}}{\partial A_i^I} \sim 0 \quad (I = 1, \dots, 16, \ i = 1, \dots, d)$$

Wilson-line Moduli Stability (2)

Hessian matrix:

• Simplest configurations

$$A_a = \left(0^p, \left(\frac{1}{2}\right)^q\right) \ (p+q=16), \ A_b = (0^{16})$$

• $D \in 2\mathbf{Z}$:

$$\frac{\partial^2 \Lambda^{(10-d)}}{\partial A_i^I \partial A_j^J} \sim \xi \delta_{IJ} \delta_{ij} \quad (I, J = 1, \dots, 16, \ i, j = 1, \dots, d) \quad \xi > 0$$

- \Rightarrow Hessian is positive definite
- > A global minimum when the gauge group is SO(32)and <u>no massless fermions</u> exist ($\Lambda < 0$)

Wilson-line Moduli Stability (3)

≻Hessian matrix:

Simplest configurations

$$A_a = \left(0^p, \left(\frac{1}{2}\right)^q\right) \ (p+q=16), \ A_b = \left(0^{16}\right)$$

• $D \in 2\mathbf{Z} + 1$:

$$\frac{\partial^2 \Lambda^{(10-d)}}{\partial A_i^I \partial A_j^J} \sim \begin{cases} (2p-17) \,\xi' \delta_{IJ} \delta_{ij} & (I=1,\ldots,p), \\ (-2p+15) \,\xi' \delta_{IJ} \delta_{ij} & (I=p+1,\ldots,16) \end{cases} \qquad \xi' > 0$$

 \Rightarrow Hessian is positive/negative definite for p = 0,16/p = 8

> A global minimum when the gauge group is SO(32) while a local maximum when the gauge group is $SO(16) \times SO(16)$

$$\succ$$
 p = 7,9 (n_F = n_B) ⇒ saddle points

- 1. Introduction
- 2. Non-SUSY Hetero with general Z₂ twists
- 3. Endpoint limits & Interpolations
- 4. Cosmological Constant
- 5. Summary

<u>Summary</u>

• (10 - d)D Non-SUSY models are constructed by orbifolding by $(-)^{F} \alpha$

(α : shift of order 2 in Narain lattice)

- Various interpolation are shown in d = 2 case
- Cosmological constant of (10 d)D Non-SUSY models in $R_i \approx \infty$ is

$$\Lambda^{(10-d)} \sim \frac{4! \cdot 2^{d-1}}{\pi^{15-d}} \left(\prod_{i=1}^{d} R_i \right) \sum_{\overrightarrow{n}} \left\{ \sum_a (2n_a - 1)^2 R_a^2 + \sum_b (2n_b)^2 R_b^2 \right\}^{-5} (n_F - n_B) + \mathcal{O}(e^{-R/\sqrt{\alpha'}})$$

- Find the configurations of WLs which gives exp. supp. CC
- Analyze WL-moduli stability: $n_F = n_B \Leftrightarrow$ saddle points

Out look

Higher-loop correction, (meta)stable vacua, cosmology