NITEP素粒子現象論研究会2022 2023.03.16

Semi-analytic approaches for

evolutions of DM halos

Nagisa Hiroshima

Univ. of Toyama, RIKEN iTHEMS

Contents:

1. Motivation for particle DM search

2. Semi-analytic subhalo mass function

3. Applications

1. Motivation for

particle DM search

Evidence of invisible matter

- mass of galaxy cluster
- Rotation curves of galaxies
- bullet cluster observations
- large scale structures

THE ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

OCTOBER 1937

VOLUME 86

NUMBER 3

Zwicky, 1937

ON THE MASSES OF NEBULAE AND OF CLUSTERS OF NEBULAE

F. ZWICKY

ABSTRACT

Present estimates of the masses of nebulae are based on observations of the *luminosities* and *internal rotations* of nebulae. It is shown that both these methods are unreliable; that from the observed luminosities of extragalactic systems only lower limits for the values of their masses can be obtained (sec. i), and that from internal

Markevitch et al., 2004

Cosmological Requirement

Parameter	Planck alone	Planck + BAO	
$\Omega_{ m b}h^2$	0.02237 ± 0.00015	0.02242 ± 0.00014	
$\Omega_{ m c}h^2$	0.1200 ± 0.0012	0.11933 ± 0.00091	
$100\theta_{\rm MC}$	1.04092 ± 0.00031	1.04101 ± 0.00029	
au	0.0544 ± 0.0073	0.0561 ± 0.0071	
$\ln(10^{10}A_{\rm s})$	3.044 ± 0.014	3.047 ± 0.014	
<i>n</i> _s	0.9649 ± 0.0042	0.9665 ± 0.0038	
$\overline{H_0}$	67.36 ± 0.54	67.66 ± 0.42	
Ω_{Λ}	0.6847 ± 0.0073	0.6889 ± 0.0056	
$\Omega_m \ \ldots \ \ldots \ \ldots$	0.3153 ± 0.0073	0.3111 ± 0.0056	
$\Omega_{ m m}h^2\ldots\ldots\ldots$	0.1430 ± 0.0011	0.14240 ± 0.00087	
$\Omega_{ m m}h^3\ldots\ldots\ldots$	0.09633 ± 0.00030	0.09635 ± 0.00030	
σ_8	0.8111 ± 0.0060	0.8102 ± 0.0060	
$\sigma_8(\Omega_{ m m}/0.3)^{0.5}$	0.832 ± 0.013	0.825 ± 0.011	
<i>z</i> _{re}	7.67 ± 0.73	7.82 ± 0.71	
Age[Gyr]	13.797 ± 0.023	13.787 ± 0.020	
$r_*[Mpc] \dots$	144.43 ± 0.26	144.57 ± 0.22	
$100\theta_*$	1.04110 ± 0.00031	1.04119 ± 0.00029	
$r_{\rm drag}[{ m Mpc}]$	147.09 ± 0.26	147.57 ± 0.22	
<i>Z</i> _{eq}	3402 ± 26	3387 ± 21	
$k_{\rm eq}[{ m Mpc}^{-1}]$	0.010384 ± 0.000081	0.010339 ± 0.000063	
Ω_K	-0.0096 ± 0.0061	0.0007 ± 0.0019	
$\Sigma m_{\nu} [eV] \ldots \ldots$	< 0.241	< 0.120	
$N_{\rm eff}$	$2.89^{+0.36}_{-0.38}$	$2.99_{-0.33}^{+0.34}$	
<i>r</i> _{0.002}	< 0.101	< 0.106	

Planck 2018

5

Brief cosmological history

Inflation

radiation dominated era

matter dominated era $T \sim \mathcal{O}(10^4) \text{ K} \text{ (z=3500)}$

DM structure formation starts

CMB $T \sim \mathcal{O}(10^3)$ K (z=1100) baryon structure formation starts

current Universe $T \sim 2.7 \text{K}$ (z=0)

Our understanding

DM=non-baryonic matter in the Universe of $\Omega_{\rm DM}h^2 \sim 0.12$

motivation

- structure formation
- rotation curves
- bullet cluster

properties

- non-relativistic
- cold (warm, hot)
- almost invisible
- feel gravity

WIMP: a famous example

the mass $m_{\rm DM} \sim O({\rm GeV}) - O({\rm TeV})$ Saikawa & Shirai, 2020

- freeze-out scenario to

achieve the relic

abundance
$$\Omega_{\rm DM} h^2 \sim 0.1$$

- the annihilation

cross-section

$$\langle \sigma v \rangle \sim \mathcal{O}(10^{-26} \mathrm{cm}^3 s^{-1})$$

DM + DM → SM + SM : signal search @z~0 Behave as cold dark matter (CDM)

CDM structure

Ishiyama et al., 2021

2. Semi-analytic

subhalo mass function

Key quantities

halo mass function

halo density profiles

Obstacles

.wide halo mass range ($\sim 10^{-6} M_{\odot} - 10^{16} M_{\odot})$

• wide redshift range

different evolution histories of individual halos

halo statistics

Story of DM halo

Story of DM halo

Extended Press-Shechter

- overdensity collapse to form halo

- two parameters:

collapse redshift ($\delta(z)$) & mass scale ($\sigma(M)$)

- initial condition: power spectrum

- distribution function

 $f(\sigma^{2}(m), \delta(z + \Delta z) \mid \sigma^{2}(M), \delta(z)) = \frac{1}{\sqrt{2\pi}} \frac{\delta(z + \Delta z) - \delta(z)}{[\sigma^{2}(m) - \sigma^{2}(M)]^{3/2}} \exp\left[-\frac{(\delta(z + \Delta z) - \delta(z))^{2}}{2(\sigma^{2}(m) - \sigma^{2}(M))}\right]$

fraction of halo of which mass was m at $z + \Delta z$ in M at z

evolution history of M(z)

- distribution function

$$f(\sigma^{2}(m), \delta(z + \Delta z) \mid \sigma^{2}(M), \delta(z)) = \frac{1}{\sqrt{2\pi}} \frac{\delta(z + \Delta z) - \delta(z)}{[\sigma^{2}(m) - \sigma^{2}(M)]^{3/2}} \exp\left[-\frac{(\delta(z + \Delta z) - \delta(z))^{2}}{2(\sigma^{2}(m) - \sigma^{2}(M))}\right]$$

16

unevolved mass function

unevolved mass function

tidal evolution: assumption

 The DM density distribution of the host and accreting subhalo follow the NFW profiles

$$\rho(r) = \rho_s \left(\frac{r}{r_s}\right)^{-1} \left(1 + \frac{r}{r_s}\right)^{-2}$$

- Tidal stripping rate is determined at the pericenter of the accreting orbit
- The DM distribution of subhalos after the tidal stripping are NFW profile with truncation

evolved mass function

- # distribution at accretion: given (unevolved mass function)
- tidal effect:

determined by the host mass & redshift

$$\dot{m}(z) = -A(M, z) \frac{m}{\tau_{\rm dyn}} \left(\frac{m}{M}\right)^{\zeta(M, z)}$$

different host evolution \leftrightarrow different tidal evolution

evolved mass function

3. Applications

(a) observable vs intrinsic

- observed/simulated:
 - host mass uncertainty (obs.)
 - or finite mass range of the sample host (sim.)
 - · always with Poisson fluctuation (obs. & sim.)
- intrinsic
 - definite host mass at z = 0, 1)calc. for different host masses
 - 2)incl. of the error in the host mass estimate
 - no Poisson fluctuation in the # count
 - Poisson distribution of expectation value N
 - -> recalculate mass function

(a) comparison

24

(b) prior construction

Ando, Geringer-Sameth, NH, Hoof, Trotta, Walker, 2020

red: number of the satellite in Via Lactae $og(d^2N_{sat}/d\ln r_s/d\ln \rho_s)$ Il simulation white: "informative" prior distribution black: likelihood blue: posterior distribution

making use of the evolution history of DM halos to obtain good priors for the Milky Way's satellites

(b) J-factor estimate

Ando, Geringer-Sameth, NH, Hoof, Trotta, Walker, 2020

Constraints on the $<\sigma v >$

Ando, Geringer-Sameth, NH, Hoof, Trotta, Walker, 2020

Summary:

- Halo is a key to access the nature of DM
- Evolution of CDM subhalo can be well-described in
- semi-analytical ways.
- Quick calculation of halo evolution enables us to
- probe physics beyond the Standard scenarios using
- observational data around our Galaxy.
- Further applications are now being considered.

	21