New approaches to/from dark matter

Koji Ishiwata

Kanazawa University

• **PRB** 106 (2022) 19, 195157, PRD 104 (2021) 1, 016004

• PRD 106 (2022) 10, 103014 (with S. Ando, N. Hiroshima)

素粒子現象論研究会2022

Osaka, March 16, 2023

1. Introduction

Dark matter (DM)

- Electrically neutral
- Non-baryonic
- Stable or sufficiently long-lived
- Non-relativistic
- $\Omega_{\rm DM} \simeq 0.26$
- $10^{-31} \text{ GeV} < m_{\text{dm}} \lesssim M_{\text{Pl}}$ or $10^{-14} < m_{\text{dm}}/M_{\odot} \lesssim 10^{-12}$

Direct searches

 $DM SM \to DM^{(\prime)} SM^{(\prime)}$

Indirect searches DM (DM) \rightarrow SMs

Past works:

Esmaili, Ibarra, Peres '12 Murase, Beacom '12 Ahlers, Murase '14 Murase, Laha, Ando, Ahlers '15 Aloisio, Matarrese, Olinto '15 Kalashev, Kuznetsov '16 Cohen, Murase, Rodd, Safdi, Soreq '17 Kachelriess, Kalashev, Kuznetsov '18 Sui, Bhupal Dev '18

<u>Outline</u>

1. Introduction

- 2. Axion in topological insulators
- 3. Primordial curvature perturbations
- 4. Conclusion

2. Axion in topological insulators

Axion and axion-like particles (ALPs)

- A solution to the strong CP problem (for axion)
- DM candidates
- Inspired by superstring theory
- Impacts on cosmology (axion strings, domain walls, mini-clusters, etc.)
- Lots of searching using various techniques are ongoing

Axion and axion-like particles

- A solution to the strong CP pr
- DM candidates
- Inspired by superstring theory
- Impacts on cosmology (axion etc.)

• Lots of searching using various techniques are ongoing

Axion and axion-like particles (ALPs)

- A solution to the strong CP problem (for axion)
- DM candidates
- Inspired by superstring theory
- Impacts on cosmology (axion strings, domain walls, mini-clusters, etc.)
- Lots of searching using various techniques are ongoing
- 'Axion' is predicted in topological insulators
- 'Axion' in insulators can be used for axion detection

Axion is predicted in topological magnetic insulators

(Topological insulator)

Marsh, Fong, Lentz, Smejkal, Ali '19

Proposals for axion/ALPs :

Proposals for axion/ALPs §

ω_+ γ_5 E $\begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}_{1} \mathcal{S}_{1}$ ω_{-} θ ψ γ ····· AQ $\overset{}{\overset{}_{\overset{}_{\overset{}_{\overset{}}_{\overset{}}_{\overset{}}}}}$ B_0 0 = 0.00.51.0 1.5 $k/\sqrt{\epsilon} \; [\mathrm{meV}]$ B.C.'s $\sim 1/f_a$ Dirac quasiparticles \sim $heta_D$ ψ θ_Q E $\gamma_{\rm THz}$ Spin wave Photons Dark axion Induced field S S B₀ ϕ_+ \gtrsim B_0 $p^2 - \omega_+^2$ A-TI Polariton Resonance

Marsh, Fong, Lentz, Smejkal, Ali '19

Only meV range?

Basics to axion in insulators

- a). Insulators
- b). Quantum Hall effect

<u>a). Insulators</u>

b). Quantum Hall effect

e.g., 2D insulator

Quantized electric current is induced in x direction

e.g., a toy model in 2D

$$H = \begin{pmatrix} m & k_x - ik_y \\ k_x + ik_y & -m \end{pmatrix} = \boldsymbol{d} \cdot \boldsymbol{\sigma}$$

$$\boldsymbol{d} = (m, k_x, k_y)$$

around
$$\boldsymbol{k}=0$$

b). Quantum Hall effect

The band structure

Normal insulator

The band structure

m < 0

Normal insulator

QH insulator

The band structure

Band inversion

Normal insulator

Topological insulator (TI)

3D TI, Bi_2Se_3

H. Zhang et al. '09

Cristal structure

Energy levels

3D TI, Bi_2Se_3

H. Zhang et al. '09

Band inversion due to strong SOC

$$H_0(\boldsymbol{k}) = \epsilon_0 \mathbf{1}_{4 \times 4} + \sum_{a=1}^5 d^a \Gamma^a$$

 $(d^{1}, d^{2}, d^{3}, d^{4}, d^{5}) = (A_{2} \sin k_{x}, A_{2} \sin k_{y}, A_{1} \sin k_{z}, \mathcal{M}(\mathbf{k}), 0)$ $\mathcal{M}(\mathbf{k}) = M - 2B_{1} - 4B_{2} + 2B_{1} \cos k_{z} + 2B_{2}(\cos k_{x} + \cos k_{y})$ $\Gamma^{1} = \begin{pmatrix} 0 & \sigma^{x} \\ \sigma^{x} & 0 \end{pmatrix} \qquad \Gamma^{2} = \begin{pmatrix} 0 & \sigma^{y} \\ \sigma^{y} & 0 \end{pmatrix} \qquad \Gamma^{3} = \begin{pmatrix} 0 & -i\mathbf{1} \\ -i\mathbf{1} & 0 \end{pmatrix}$ $\Gamma^{4} = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} \qquad \Gamma^{5} = \begin{pmatrix} 0 & \sigma^{z} \\ \sigma^{z} & 0 \end{pmatrix}$

"Effective Hamiltonian for 3D TI"

"Effective Hamiltonian for 3D TI"

"Effective Hamiltonian for 3D TI"

In addition we consider antiferromagnetism (AFM)

$$\mathcal{H}_{\rm int} = \frac{UV}{N} \int d^3x \, \left(n_{\rm A\uparrow} n_{\rm A\downarrow} + n_{\rm B\uparrow} n_{\rm B\downarrow} \right)$$

"Hubbard term"

U : parameter to give AFM

Large $U \longrightarrow AFM$

$$\mathcal{H}_{\text{int}} = \frac{UV}{N} \int d^3x \, \left(n_{\text{A}\uparrow} n_{\text{A}\downarrow} + n_{\text{B}\uparrow} n_{\text{B}\downarrow} \right)$$
Hubbard-Stratonovich (HS) transformation

 $\begin{array}{c} n_{\mathrm{A}\uparrow}n_{\mathrm{A}\downarrow}, n_{\mathrm{B}\uparrow}n_{\mathrm{B}\downarrow} \\ (\psi_{\uparrow}^{\dagger}\psi_{\uparrow}\psi_{\downarrow}^{\dagger}\psi_{\downarrow}) \end{array}$

Four Fermi int.

Yukawa int.

$$\mathcal{H}_{\text{int}} = \frac{UV}{N} \int d^3x \, \left(n_{\text{A}\uparrow} n_{\text{A}\downarrow} + n_{\text{B}\uparrow} n_{\text{B}\downarrow} \right)$$
Hubbard-Stratonovich (HS) transformation

- A dynamical scalar ϕ that gives $\Gamma^5 d_5$ ($d_5 = \phi$)
- Mass term of ϕ and the missed in Sekine, Nomura '16

Sekine, Nomura '20 Schütte-Engel '21

(confirmed by private communication with Sekine-san)

$$\mathcal{H}_{\text{int}} = \frac{UV}{N} \int d^3x \, \left(n_{\text{A}\uparrow} n_{\text{A}\downarrow} + n_{\text{B}\uparrow} n_{\text{B}\downarrow} \right)$$
Hubbard-Stratonovich (HS) transformation

- A dynamical scalar ϕ that gives $\Gamma^5 d_5$ ($d_5 = \phi$)
- \bullet Mass term of $~\phi$
- ϕ relates to the axion field $\theta = \frac{1}{4\pi} \int d^3k \frac{2|d| + d^4}{(|d| + d^4)^2 |d|^3} \epsilon^{ijkl} d^i \partial_{k_x} d^j \partial_{k_y} d^k \partial_{k_z} d^l$

R. Li et al. '10

Derivation as chiral anomaly

$$H(\boldsymbol{k}) = \sum_{a=1}^{5} d^{a}(\boldsymbol{k})\Gamma^{a}$$

 $(d^1, d^2, d^3, d^4, d^5) = (A_2 \sin k_x, A_2 \sin k_y, A_1 \sin k_z, \mathcal{M}(\mathbf{k}), \phi)$ $\mathcal{M}(\mathbf{k}) = M - 2B_1 - 4B_2 + 2B_1 \cos k_z + 2B_2(\cos k_x + \cos k_y)$

Derivation as chiral anomaly

$$H(\boldsymbol{k}) = \sum_{a=1}^{5} d^{a}(\boldsymbol{k})\Gamma^{a}$$

 $(d^1, d^2, d^3, d^4, d^5) = (A_2 \sin k_x, A_2 \sin k_y, A_1 \sin k_z, \mathcal{M}(\mathbf{k}), \phi)$ $\mathcal{M}(\mathbf{k}) = M - 2B_1 - 4B_2 + 2B_1 \cos k_z + 2B_2 (\cos k_x + \cos k_y)$

> - expand around ${m k}=0$ - redefine ${m k}$

$$H(\mathbf{k}) = k_x \Gamma^1 + k_y \Gamma^2 + k_y \Gamma^3 + M \Gamma^4 + \phi \Gamma^5$$

"Dirac model"

$$H(\mathbf{k}) = k_x \Gamma^1 + k_y \Gamma^2 + k_y \Gamma^3 + M \Gamma^4 + \phi \Gamma^5$$

Unitary transformation of the basis

$$\tilde{U}H(\boldsymbol{k})\tilde{U}^{\dagger} = \beta(\boldsymbol{\gamma}\cdot\boldsymbol{k} + M + \phi\gamma_5)$$

$$S = \int d^4x \ \bar{\psi}[i\gamma^{\mu}(\partial_{\mu} - ieA_{\mu}) - M - i\phi\gamma_5]\psi$$

 $\Gamma^5 \phi \,\, {
m reduces \,to} \,\, i \gamma^5 \phi$

 $i\gamma^5\phi$ term can be rotated away, which gives rise to θ term:

$$S_{\Theta} = -\frac{\alpha}{4\pi} \int d^4 x \,\Theta F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$\Theta = \frac{\pi}{2} [1 - \operatorname{sgn}(M)] \operatorname{sgn}(\phi) + \tan^{-1} \frac{\phi}{M}$$

it is consistent with

$$\theta = \frac{1}{4\pi} \int d^3k \frac{2|d| + d^4}{(|d| + d^4)^2 |d|^3} \epsilon^{ijkl} d^i \partial_{k_x} d^j \partial_{k_y} d^k \partial_{k_z} d^l$$

Partition function (TI + AFM)

$$Z = \int \mathcal{D}\psi \mathcal{D}\psi^{\dagger} \mathcal{D}\phi \ e^{iS+iS_{\phi}^{\text{mass}}}$$

$$S = \int d^{4}x \ \psi^{\dagger}(x) \left[i\partial_{t} - H\right]\psi(x) \qquad \qquad H = H_{0} + \delta H$$

$$S_{\phi}^{\text{mass}} = -\int d^{4}x \ M_{\phi}^{2}\phi^{2} \qquad \qquad M_{\phi}^{2} = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{2}{U}$$

Partition function (TI + AFM)

$$Z = \int \mathcal{D}\psi \mathcal{D}\psi^{\dagger} \mathcal{D}\phi \ e^{iS+iS_{\phi}^{\text{mass}}}$$
$$S = \int d^{4}x \ \psi^{\dagger}(x) \left[i\partial_{t} - H\right]\psi(x)$$
$$S_{\phi}^{\text{mass}} = -\int d^{4}x \ M_{\phi}^{2}\phi^{2}$$

$$\Gamma^{5}\phi$$

$$H = H_{0} + \delta H$$

$$M_{\phi}^{2} = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{2}{U}$$

Partition function (TI + AFM)

Summing over ψ , ψ^{\dagger} **Effective potential for** ϕ

$$\theta = \frac{1}{4\pi} \int d^3k \frac{2|d| + d^4}{(|d| + d^4)^2 |d|^3} \epsilon^{ijkl} d^i \partial_{k_x} d^j \partial_{k_y} d^k \partial_{k_z} d^l$$

Axion mass

Axion mass is $\mathcal{O}(eV)$

Dynamical axion is predicted in topological magnetic insulators

Dynamical axion is predicted in topological magnetic insulators

R. Li et al. '10

• $\langle \phi \rangle \ (= m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

• AFM order is assumed

R. Li et al. '10

• $\langle \phi \rangle \ (=m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

 \rightarrow Axion mass ~ $\mathcal{O}(\text{meV})$ (:: $m_a^2 \propto m_5^2$)

• AFM order is assumed

R. Li et al. '10

• $\langle \phi \rangle \ (= m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

 \rightarrow Axion mass ~ $\mathcal{O}(\text{meV})$ (:: $m_a^2 \propto m_5^2$)

• AFM order is assimpted $U \sim eV$ (in AFM order)

Axion mass

Suppressed $U \longrightarrow No AFM$

R. Li et al. '10

• $\langle \phi \rangle \ (= m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

 \rightarrow Axion mass ~ $\mathcal{O}(\text{meV})$ (:: $m_a^2 \propto m_5^2$)

• AFM order is assumed

R. Li et al. '10

• $\langle \phi \rangle \ (= m_5) = 1 \text{ meV}$ is taken

(i.e., $\langle \phi \rangle$ is considered to be a free parameter)

 \rightarrow Axion mass ~ $\mathcal{O}(\text{meV})$ (:: $m_a^2 \propto m_5^2$)

• AFM order is assumed

No AFM in TI in the first place

 \longrightarrow Fe-doped Bi_2Se_3 is considered

• Fe-doped Bi_2Se_3 , Bi_2Te_3

"likely to be AFM"

J.M. Zhang et al. '13

(by first-principles calculation)

→ It looks unlikely to be realized ...

• $Mn_2Bi_2Te_5$

J. Zhang et al. '19

"rich magnetic topological quantum states" Y. Li et al. '20 (by first-principles calculation)

First-principles calculation

Y. Li et al. '20

 $Mn_2Bi_2Te_5$ is synthesized L. Cao et al. '21

Axion mass

It can be suppressed near the phase boundary

Rich magnetic topological states in that region?

- \bullet How do we describe axion in $\,{\rm Mn_2Bi_2Te_5}$?
- What about axion in NI ?
- Dynamical axion in ferromagnetic state or other magnetic states?

Interaction between impurity and electron

$$H^{\mathrm{TI}} = \sum_{\boldsymbol{k}} c_{\boldsymbol{k}}^{\dagger} \mathcal{H}_{\boldsymbol{k}}^{\mathrm{TI}} c_{\boldsymbol{k}}$$
$$H_{J} = \sum_{I}^{N_{s}} \left[J^{A} \boldsymbol{S}^{A}(\boldsymbol{x}_{I}) \cdot \boldsymbol{s}_{I}^{A} + J^{B} \boldsymbol{S}^{B}(\boldsymbol{x}_{I}) \cdot \boldsymbol{s}_{I}^{B} \right]$$

Interaction between impurity and electron

Interaction between impurity and electron

 M_f : order parameter of FM M_5 : order parameter of AFM

Effective potential

KI '22

Temperature

Phase diagram

Axion mass

Axion mass is $\mathcal{O}(eV)$ except for the phase boundaries

Quick summary

- Axion mass is $\mathcal{O}(eV)$ while it can be suppressed around the phase boundaries in the magnetic TIs
- Material search is crucial for the particle axion detection
Approaches from astro-particle physics and cosmology

Approaches from astro-particle physics and cosmology

Approaches from astro-particle physics and cosmology

3. Primordial curvature perturbations

Constraints on primordial curvature power spectrum

Constraints on primordial curvature power spectrum

Curvature perturbation

Host halos and subhalos

Subhalos accrete on a host halo

Subhalos or satellite galaxies

Hiroshima-san's talk in detail

Curvature perturbation

Host halos and subhalos

Subhalos accrete on a host halo

Curvature perturbation

Host halos and subhalos

Subhalos accrete on a host halo Tidal stripping Subhalos or satellite galaxies

Studied in semi-analytical way calibrated by N-body simulation

Hiroshima, Ando, Ishiyama '18

Mass distribution of subhalos

Curvature perturbation

Curvature perturbation

Host halos and subhalos

Subhalos accrete on a host halo

Subhalos or satellite galaxies

Curvature perturbation

Host halos and subhalos

Subhalos accrete on a host halo

Subhalos or satellite galaxies

Enhanced in high mass region model (a) A = 2.5e-0310¹² A = 1.6e-04A = 1.0e-05m²dN_{sh}/dm [M_☉] 10¹⁰ = 6.3e-07Α A = 4.0e-08 No bump 10¹⁰ , 10⁹ 10^{8} 104 10⁸ **10**¹⁰ 10⁶ 10² 1012 $m [M_{\odot}]$ Suppressed in low mass region

The observable: stellar stream

The observable: stellar stream

Ando, KI, Hiroshima '22

No tidal stripping

Tidal stripping model Jiang, van den Bosch '16

Tidal stripping model

Hiroshima, Ando, Ishiyama '18

Limit on \mathcal{P}_R , model:(a) Limit on \mathcal{P}_R , model:(b) Limit on \mathcal{P}_R , model:(c) 10^{-2} 10^{-2} 10^{-2} 10^{-3} 10-3 10-3 10⁻⁴ 4 Amplitude 10⁻⁵ $\begin{array}{r} 10^{-4} \\ \text{Wallitude} \\ 10^{-5} \\ 10^{-6} \end{array}$ 10^{-4} Amplitude 10^{-6} 10^{-6} 10^{-6} -yman-a ymanyman 10^{-7} 10^{-7} 10^{-7} μ -distortion — · μ-distortion µ-distortion This work: Satellite counts ($V_{max} > 4$ km/s) This work: Satellite counts ($V_{max} > 4$ km/s) This work: Satellite counts ($V_{max} > 4$ km/s) This work: Stellar stream ($m > 10^5 M_{\odot}$) This work: Stellar stream ($m > 10^5 M_{\odot}$) This work: Stellar stream ($m > 10^5 M_{\odot}$) 10^{-8} 10⁰ 10⁻⁸ 10 10³ 10³ 100 10³ 10² 104 10⁵ 10⁶ 10⁴ 10⁵ 106 10¹ 10² 10⁴ 106 10^{1} 10^{1} 10² 10⁵ *k* [Mpc⁻¹*h*] *k* [Mpc⁻¹*h*] *k* [Mpc⁻¹*h*]

No tidal model dependence

4. Conclusion

Axion in magnetic TIs

- Axion mass is $\mathcal{O}(eV)$ while it can be suppressed around the phase boundary in the magnetic TIs
- Material search is crucial for the particle axion detection

Inflaton sector from DM substructure

• Tracking the evolution of DM substructure is a new technique to probe the primordial curvature perturbation

Backups

Effective potential for ϕ

KI '21

$$V_{\phi} = -2 \int \frac{d^3k}{(2\pi)^3} (\sqrt{|d_0|^2 + \phi^2} - |d_0|) + M_{\phi}^2 \phi^2$$

Negative potential

The mass term stabilizes the potential

$$|d_0|^2 = \sum_{a=1}^4 |d^a|^2$$
$$M_{\phi}^2 = \int \frac{d^3k}{(2\pi)^3} \frac{2}{U}$$

M dependence

The difference between TI and NI is not clear

KI '21

PM (paramagnetic)

KI '21 NI phase

Potential minimum:

• $\theta = 0$ (small U, i.e., PM)

• $\theta \neq 0$ (large U, i.e., AFM)

KI '21 TI phase

Potential minimum:

• $\theta = \pi$ (small U, i.e., PM) • $\theta \neq 0$ (large U, i.e., AFM)

M dependence

Ν

calculation for Dirac model is done by Zhang '19

KI '21

Stellar stream

A passage of subhalos \longrightarrow A gap in the stream

Too small or too large number of subhalos conflict with the observation

Pictures from Wikipedia

Cumulative maximum circular velocity function

<u>Cumulative number of subhalos, maximum circular velocity</u> <u>function, and boost factor</u>

