Degenerate scalar scenario in a singlet scalar extension of the Standard Model

Gi-Chol Cho (Ochanomizu U.)

in collaboration with Sachiho Abe (Ocha→), Chikako Idegawa (Ocha), Kentarou Mawatari (Iwate U.) Eibun Senaha (Van Lang U., Vietnam), Rio Sugihara (Ocha →)

based on PRD104, 035023, PLB 823, 136787, PRD106,115012, PLB 839, 137757 arXiv:2101.04887, 2105.11830, 2205.12046, 2212.13029)

NITEP 素粒子現象論研究会 2022

2023/Mar/16-18, 大阪公立大学

Search for BSM particles (heavy)

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: July 2022

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.6 - 139) \, \text{fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

ATL-PHYS-PUB-2022-034

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	D ⁻¹] Limit	Reference
Extra dimensions	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} e, \mu, \tau, \gamma \\ 2\gamma \\ - \\ 2\gamma \\ 2\gamma \\ ulti-channel \\ 1 e, \mu \\ 1 e, \mu \\ 1 e, \mu \end{array}$	1 - 4 j - 2 j ≥3 j - 2 j / 1 J ≥1 b, ≥1 J/2 ≥2 b, ≥3 j	Yes - - - Yes 2j Yes Yes	139 36.7 139 3.6 139 36.1 139 36.1 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to v \\ \text{W} \to WZ \to \ell\nu q\ell \text{ model B} \\ \text{HVT } W' \to WZ \to \ell\nu \ell\ell \text{ model B} \\ \text{HVT } W' \to WH \to \ell\nu bb \text{ model B} \\ \text{HVT } Z' \to ZH \to \ell\ell/\nu bb \text{ model B} \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ - \\ 1 \ e, \mu \\ 3 \ e, \mu \\ 1 \ e, \mu \\ 0, 2 \ e, \mu \\ 2 \ \mu \end{array}$	2b ≥1 b, ≥2 J 2i b, ≥1 J 2 j / 1 J 2 j (VBF) 1-2 b, 1-0 j 1 J	- Yes Yes Yes Yes Yes Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 139 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 4.1 TeV W' mass 6.0 TeV W' mass 5.0 TeV W' mass 4.4 TeV W' mass 4.3 TeV W' mass 3.3 TeV Z' mass 3.2 TeV W' mass 5.0 TeV W' mass 3.2 TeV W mass 5.0 TeV	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2022-005 2207.00230 2207.00230 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl µµbs Cl tttt	_ 2 e,μ 2 e 2 μ ≥1 e,μ	2 j - 1 b 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) 0 Pseudo-scalar med. (Dirac DM) 0 Vector med. Z'-2HDM (Dirac DM) Pseudo-scalar med. 2HDM+a mu) e, μ, τ, γ) e, μ, τ, γ 0 e, μ ulti-channel	1 – 4 j 1 – 4 j 2 b	Yes Yes Yes	139 139 139 139	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
70	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2 e 2 \mu 1 \tau 0 e, \mu 2 e, \mu, \ge 1 \tau e, \mu, \ge 1 \tau 1 \tau$	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ 2 \ b \\ \geq 2 \ j, \geq 2 \ b \\ \geq 1 \ j, \geq 1 \ b \\ 0 - 2 \ j, 2 \ b \\ 2 \ b \end{array} $	Yes Yes Yes - Yes Yes Yes	139 139 139 139 139 139 139	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
Vector-like fermions	$\begin{array}{ccc} VLQ\; TT \rightarrow Zt + X & 2\epsilon\\ VLQ\; BB \rightarrow Wt/Zb + X & mu\\ VLQ\; T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X & 2(S)\\ VLQ\; T \rightarrow Ht/Zt & VLQ\; Y \rightarrow Wb\\ VLQ\; B \rightarrow Hb & VLL\; \tau' \rightarrow Z\tau/H\tau & mu \end{array}$	e/2µ/≥3e,µ ulti-channel SS)/≥3 e,µ 1 e, µ 1 e, µ 0 e,µ ≥ ulti-channel	$\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 1 \text{ j}$ $2 \text{ b}, \geq 1 \text{ j}, \geq 1$ $\geq 1 \text{ j}$	- Yes Yes IJ - Yes	139 36.1 36.1 139 36.1 139 139	T mass 1.4 TeV SU(2) doublet B mass 1.34 TeV SU(2) doublet T $_{5/3}$ mass 1.64 TeV SU(2) doublet T mass 1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3} Wt) = 1$ T mass 1.8 TeV SU(2) singlet, $\kappa_T = 0.5$ Y mass 1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass 2.0 TeV $\mathcal{SU}(2)$ doublet, $\kappa_B = 0.3$ r' mass 898 GeV SU(2) doublet	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 ATLAS-CONF-2022-044
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j _	- - - -	139 36.7 139 20.3 20.3	q* mass 6.7 TeV only u* and d*, $\Lambda = m(q^*)$ q* mass 5.3 TeV only u* and d*, $\Lambda = m(q^*)$ b* mass 3.2 TeV only u* and d*, $\Lambda = m(q^*)$ t* mass 3.2 TeV $\Lambda = m(q^*)$ v* mass 1.6 TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1910.0447 1411.2921 1411.2921
Other	Type III Seesaw2LRSM Majorana vLRSM Majorana vHiggs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ 2,3Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2,3Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particlesMagnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	2,3,4 e, μ 2 μ 8,4 e, μ (SS) 3 e, μ, τ - - 13 TeV	≥2 j 2 j) various - - - - -	Yes Yes 	139 36.1 139 139 20.3 139 34.4	N° mass 910 GeV N _R mass 3.2 TeV H ^{±±} mass 350 GeV H ^{±±} mass 1.08 TeV H ^{±±} mass 1.09 TeV multi-charged particle mass 1.59 TeV monopole mass 2.37 TeV DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 ATLAS-CONF-2022-034 1905.10130
	partia	aldata	Tuli d	ata		Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Search for BSM particles (light)

Current status

BSM particles → decoupled from the SM?
(1) too heavy
(2) light but tiny coupling

dark matter in the universe

→ direct evidence of physics beyond the SM

arXiv: 2207.03764

why is DM not observed at those experiments, although it is found in astronomical observations?

BSM particles → decoupled from the SM?
(1) too heavy
(2) light but tiny coupling

BSM particles → decoupled from the SM?
(1) too heavy
(2) light but tiny coupling
(3) accessible, but...

Suppression mechanisms of DMquark scattering

fermion DM + pseudo scalar portal model (coupling vanishes at low E.)

Ipek, McKeen, Nelson (2014)

Escudero, Berlin, Hooper, Lin (2016)

Abe, Fujiwara, Hisano (2019)

pseudo Nambu-Goldstone DM

Gross, Lebedev, Toma (2017)

pNG DM with degenerate scalars

Abe, GCC, Mawatari (2021)

arXiv: 2207.03764

Plan

Introduction

Degenerate scalar scenario in CxSM

Singlet scalar extension of the SM Suppression of DM-quark scattering Bounds on degenerate scalar scenario Search for degenerate scalars@ILC

phenomenological implication of degenerate scalar scenario

EW phase transition and gravitational waves (→ Idegawa's talk)

Multi-critical point principle and the degenerate scalar scenario

attempt to understanding degenerate scalar scenario

Origin of the suppression mechanism

Summary

Singlet scalar extension of the SM

SM + complex S (CxSM) Barger etal, arXiv:0811.0393

$$V = \frac{m^2}{2}|H|^2 + \frac{\lambda}{4}|H|^4 + \frac{\delta_2}{2}|H|^2|S|^2 + \frac{b_2}{2}|S|^2 + \frac{d_2}{4}|S|^4 + \left(a_1S + \frac{b_1}{4}S^2 + \text{c.c.}\right)$$
(pNG DM: $S \to -S$)

global U(1) and soft breaking terms (minimal set of operators to realize pNG DM w/o domain wall)

Singlet scalar extension of the SM

 $V = \frac{m^2}{2}|H|^2 + \frac{\lambda}{4}|H|^4 + \frac{\delta_2}{2}|H|^2|S|^2 + \frac{b_2}{2}|S|^2 + \frac{d_2}{4}|S|^4 + \left(a_1S + \frac{b_1}{4}S^2 + \text{c.c.}\right)$

$$M^{2} = \begin{pmatrix} \frac{\lambda}{2}v^{2} & \frac{\delta_{2}}{2}vv_{S} \\ \frac{\delta_{2}}{2}vv_{S} & \Lambda^{2} \end{pmatrix}$$

mass matrix (h, s)

$$\Lambda^2 \equiv \frac{d_2}{2}v_S^2 - \sqrt{2}\frac{a_1}{v_S}$$

 $\begin{array}{ll} \text{mass eigenvalues} & m_{h_1} \to m(125) @ \text{LHC} \\ (h_1, h_2) & \text{(DM)} \\ m_{h_1, h_2}^2 = \frac{1}{2} \left(\frac{\lambda}{2} v^2 + \Lambda^2 \mp \sqrt{\left(\frac{\lambda}{2} v^2 - \Lambda^2\right)^2 + 4\left(\frac{\delta_2}{2} v v_S\right)^2} \right) & m_\chi^2 = -b_1 - \sqrt{2} \frac{a_1}{v_S} \end{array}$

mass eigenstates $(h_1, h_2) \leftrightarrow (h, s)$

$$\begin{pmatrix} h \\ s \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

Suppression of DM-quark scattering

Yukawa interactions

$$\mathcal{L}_Y = \frac{m_f}{v} \bar{f} f(h_1 \cos \alpha + h_2 \sin \alpha)$$

$$\binom{h}{s} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \binom{h_1}{h_2}$$

Suppression of DM-quark scattering

$$i\mathcal{M}_{h_1} = -i\frac{m_f}{vv_S}\frac{m_{h_1}^2 + \frac{\sqrt{2}a_1}{v_S}}{t - m_{h_1}^2}\sin\alpha\cos\alpha \ \bar{u}(p_3)u(p_1),$$
$$i\mathcal{M}_{h_2} = +i\frac{m_f}{vv_S}\frac{m_{h_2}^2 + \frac{\sqrt{2}a_1}{v_S}}{t - m_{h_2}^2}\sin\alpha\cos\alpha \ \bar{u}(p_3)u(p_1),$$

sum of scatt. amplitudes:

$$i \left(\mathcal{M}_{1} + \mathcal{M}_{2}\right) = i \frac{m_{f}}{vv_{S}} \bar{u}(p_{3})u(p_{1}) \sin \alpha \cos \alpha$$

$$\times \left\{ \left(-\frac{m_{h_{1}}^{2}}{t - m_{h_{1}}^{2}} + \frac{m_{h_{2}}^{2}}{t - m_{h_{2}}^{2}} \right) \xrightarrow{\simeq} 0 \quad \textcircled{Q}t \to 0$$

$$\xrightarrow{\text{Gross, Lebedev, Toma (2017)}} + \frac{\sqrt{2}a_{1}}{v_{S}} \left(-\frac{1}{t - m_{h_{1}}^{2}} + \frac{1}{t - m_{h_{2}}^{2}} \right) \right\} \simeq 0 \quad \textcircled{Q}m_{h_{1}} \sim m_{h_{2}}$$

$$\xrightarrow{\text{Abe, GCC, Mawatari (2021)}}$$

Suppression of DM-quark scattering $\chi_{-} \cos \alpha_{-}$ $\sin \alpha$ h_2 h_1 $\cos \alpha$ $-\sin \alpha$ qq $i\left(\mathcal{M}_1 + \mathcal{M}_2\right) = i\frac{m_f}{vv_S}\bar{u}(p_3)u(p_1)\sin\alpha\cos\alpha$ a la GIM mechanism $\times \left\{ \left(-\frac{m_{h_1}^2}{t - m_{h_1}^2} + \frac{m_{h_2}^2}{t - m_{h_2}^2} \right) + \frac{\sqrt{2}a_1}{v_S} \left(-\frac{1}{t - m_{h_1}^2} + \frac{1}{t - m_{h_2}^2} \right) \right\} \simeq 0 \quad @m_{h_1} \sim m_{h_2}$ degenerate scalar scenario お茶の水カ子 G.C.Cho

Ochanomizu University

 σ^p_{SI} vs. m_{h_2}

Abe, GCC, Mawatari (2021)

$$\begin{aligned} \alpha &= \frac{\pi}{4}, \ v = v_S = 246 \text{ GeV}, \ a_1 = (246 \text{ GeV})^3 \\ \text{perturbativity} \quad \lambda, d_2 < \frac{16\pi}{3} \qquad \qquad \text{stability} \quad \lambda \left(d_2 + \frac{2\sqrt{2}a_1}{v_S^3} \right) > \delta_2^2 \end{aligned}$$

Ochanomizu University

17/37

 $\Gamma(h_2 \to \mathrm{SM}) = \Gamma(h_{\mathrm{SM}} \to \mathrm{SM})(m_{h_2}) \times \sin^2 \alpha$

 $\Gamma(h_1 \to SM) + \Gamma(h_2 \to SM) \simeq \Gamma(h_{SM} \to SM)$ for $m_{h_1} \simeq m_{h_2}$

MadGraph5_aMC@NLO Pythia 8.2 Delphes (ILCDelphes card)

total # of events=int.L x 10 fb ($\sigma(e^+e^- \rightarrow hZ) \times Br(Z \rightarrow \mu^+\mu^-)$) for $m_h = 125$ GeV w/ P(e^-, e^+) = (-0.8,0.3)

$$\chi^2 = \sum_{i=1}^{N} \frac{(n^i - n^i_{\rm SM})^2}{n^i_{\rm SM}} \quad \text{w/} \ n^i \text{ (\# of events in the i-th bin)} \ge 10$$

Search for degenerate scalars@ILC

degenrate scalar scenario w/ $\Delta m \ge 0.2$ GeV might be tested at ILC with 2 ab^{-1}

* Interference effects could be important when $|m_{h_1} - m_{h_2}| \lesssim \Gamma_{h_1} + \Gamma_{h_2}$ Fuchs, Thewes, Weiglein, 1411.4652 Das, Moretti, Munir, Poulose, 1704.02941 Sakurai, Yin, 2204.01739

 $\Delta m = 1.0 \text{ G}$ $\Delta m = 0.5$ $\Delta m = 0.4$

 $\Delta m = 0.3$ $\Delta m = 0.2$ $\Delta m = 0.1$ $\sqrt{s} = 250 \text{ GeV}$

GCC, Idegawa, Sugihara (2022)

Multi-critical point principle (MPP)

...Nature fine-tunes couplings to their values at the multiple point

@SM

$$V_{\rm eff}(\phi) = \mu^2(\phi)\phi^2 + \frac{\lambda(\phi)}{8}\phi^4 \longrightarrow 0 = \frac{dV_{\rm eff}(\phi)}{d\phi}\Big|_{\langle\phi\rangle_2} \approx \frac{1}{8}\beta_\lambda\phi^3\Big|_{\langle\phi\rangle_2}$$

$$\bigvee_{\rm M_{\rm EW}} \chi_{\rm M_{\rm pl}} \chi_{\rm M_{\rm pl}} \chi_{\rm M_{\rm pl}}$$

 $m_t \approx 173 \,\, {\rm GeV}, \,\, m_h \approx 135 \,\, {\rm GeV}$

Application

Froggatt, Nielsen, PLB368 (1996) 96

2HDM: Frogatt etal (2004), Maniatis etal (2020) SM+singlet scalars: Haruna, Kawai (2019), Hamada etal (2022)

GCC, Idegawa, Sugihara (2022)

Tree-level MPPKannike, Koivunen, Raidal, NPB968 (2021) 115441...multiple vacua@tree level in multi scalar models

However, pNG-DM model does not have degenerate vacua $V = \frac{m^2}{2}|H|^2 + \frac{\lambda}{4}|H|^4 + \frac{\delta_2}{2}|H|^2|S|^2 + \frac{b_2}{2}|S|^2 + \frac{d_2}{4}|S|^4 + \left(a_1S + \frac{b_1}{4}S^2 + \text{c.c.}\right)$ $H = \frac{1}{\sqrt{2}}\begin{pmatrix}0\\v+h\end{pmatrix}, \quad S = (v_S + s + i\chi)/\sqrt{2}$ $\longrightarrow V(v, v_S) \neq V(0, v'_S)$ No Multi-critical point (when $a_1 \neq 0$)

How about in the degenerate scalar scenario?

For compatibility of 1st order EWPT and tree-level MPP → Idegewa's talk

Lesson from the GIM mechanism

$$K \to \mu^+ \mu^-$$

 $\operatorname{\mathsf{amp}} \sim \cos \theta_C \sin \theta_C \left\{ f(m_u) - f(m_c) \right\} \simeq 0 \quad @m_u \sim m_c$

*3generation → unitarity of CKM matrix

GCC, Idegawa, in progress

Origin of the cancellation of DM-quark amplitudes at the degenerate limit of scalar masses

Formulation
$$-\mathcal{L}_{int} = C_{ijkl}\phi_i\phi_j\phi_k\phi_l$$

$$\begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} C_{hh} & C_{hs} \\ C_{hs} & C_{ss} \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \begin{pmatrix} C_{h_1h_1} & 0 \\ 0 & C_{h_2h_2} \end{pmatrix}$$
$$\begin{pmatrix} h \\ s \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

$$-\mathcal{L}_{\mathsf{Yukawa}} = C_{h_1 f f} \overline{\psi}_L \psi_R h_1 + C_{h_2 f f} \overline{\psi}_L \psi_R h_2 + \mathsf{h.c.}$$

GCC, Idegawa, in progress

$$i(\mathcal{M}_1 + \mathcal{M}_2) \propto \sum_{i=1,2} C_{h_i \chi \chi} C_{h_i f f} \frac{1}{t - m_{h_i}^2}$$

cancellation@ $t \rightarrow 0$

$$\begin{array}{l} f \to 0 & \frac{C_{h_1\chi\chi}}{m_{h_1}^2}\cos\alpha - \frac{C_{h_2\chi\chi}}{m_{h_2}^2}\sin\alpha = 0 \\ & C_{h_1\chi\chi} = C_{h\chi\chi}\cos\alpha + C_{s\chi\chi}\sin\alpha \\ & C_{h_2\chi\chi} = -C_{h\chi\chi}\sin\alpha + C_{s\chi\chi}\cos\alpha \\ C_{h\chi\chi} = \frac{A}{v_s}(C_{hs} + \Delta_h), \quad C_{s\chi\chi} = \frac{A}{v_s}(C_{ss} + \Delta_s) \\ & (H - S \text{ mixing}) \end{array}$$

GCC, Idegawa, in progress

$$C_{h\chi\chi} = \frac{A}{v_s} (C_{hs} + \Delta_h), \quad C_{s\chi\chi} = \frac{A}{v_s} (C_{ss} + \Delta_s)$$

(H - S mixing)

$$\begin{aligned} \frac{C_{h_1\chi\chi}}{m_{h_1}^2}\cos\alpha - \frac{C_{h_2\chi\chi}}{m_{h_2}^2}\sin\alpha &= \frac{A}{v_s} \left[\sin\alpha\cos\alpha \left\{ \frac{m_{h_1}^2 + \Delta_s}{m_{h_1}^2} - \frac{m_{h_2}^2 + \Delta_s}{m_{h_2}^2} \right\} + \Delta_h \left(\frac{\cos^2\alpha}{m_{h_1}^2} + \frac{\sin^2\alpha}{m_{h_2}^2} \right) \right] \\ &= 0 \quad \text{if } \Delta_h = 0 \text{ at } m_{h_1} = m_{h_2} \end{aligned}$$

mixing term of H and S is important

(In addition, $\Delta_s = 0$ is necessary in the pNG-DM model)

GCC, Idegawa, in progress

$$C_{h\chi\chi} = \frac{A}{v_s} (C_{hs} + \Delta_h), \quad C_{s\chi\chi} = \frac{A}{v_s} (C_{ss} + \Delta_s)$$

(H - S mixing)

GCC, Idegawa, in progress

$$\frac{C_{h_1\chi\chi}}{m_{h_1}^2}\cos\alpha - \frac{C_{h_2\chi\chi}}{m_{h_2}^2}\sin\alpha = \frac{A}{v_s} \left[\sin\alpha\cos\alpha \left\{\frac{m_{h_1}^2 + \Delta_s}{m_{h_1}^2} - \frac{m_{h_2}^2 + \Delta_s}{m_{h_2}^2}\right\} + \Delta_h \left(\frac{\cos^2\alpha}{m_{h_1}^2} + \frac{\sin^2\alpha}{m_{h_2}^2}\right)\right]$$
$$= 0 \quad \text{if } \Delta_h = 0 \text{ at } m_{h_1} = m_{h_2}$$
$$C_{h\chi\chi} = \frac{A}{v_s} (C_{hs} + \Delta_h), \quad C_{s\chi\chi} = \frac{A}{v_s} (C_{ss} + \Delta_s)$$
$$(H - S \text{ mixing})$$

In our case

$$V \supset \frac{\delta_2}{2} |H|^2 |S|^2 = C_{h\chi\chi} h\chi^2 + C_{hs} hs$$
$$C_{h\chi\chi} = \frac{\delta_2}{4} v = \frac{1}{2v_S} C_{hs} \quad \rightarrow A = \frac{1}{2}, \quad \Delta_h = 0$$

GCC, Idegawa, in progress

$$\frac{C_{h_1\chi\chi}}{m_{h_1}^2}\cos\alpha - \frac{C_{h_2\chi\chi}}{m_{h_2}^2}\sin\alpha = \frac{A}{v_s} \left[\sin\alpha\cos\alpha \left\{\frac{m_{h_1}^2 + \Delta_s}{m_{h_1}^2} - \frac{m_{h_2}^2 + \Delta_s}{m_{h_2}^2}\right\} + \Delta_h \left(\frac{\cos^2\alpha}{m_{h_1}^2} + \frac{\sin^2\alpha}{m_{h_2}^2}\right)\right]$$
$$= 0 \quad \text{if } \Delta_h = 0 \text{ at } m_{h_1} = m_{h_2}$$
$$C_{h\chi\chi} = \frac{A}{v_s} (C_{hs} + \Delta_h), \quad C_{s\chi\chi} = \frac{A}{v_s} (C_{ss} + \Delta_s)$$
$$(H - S \text{ mixing})$$

most general scalar potential

$$V \supset \frac{\delta_2}{2} |H|^2 |S|^2 + \left(\frac{\delta_1}{4} |H|^2 S + \frac{\delta_3}{4} |H|^2 S^2 + \text{c.c.}\right) = C_{h\chi\chi} h\chi^2 + C_{hs} hs$$
$$C_{h\chi\chi} = \frac{\delta_2 - \delta_3}{4} v, \quad C_{hs} = \frac{v}{2} \left(\frac{\delta_1}{\sqrt{2}} + \delta_2 v_S + \delta_3 v_S\right)$$

a oft brooking torma

 $\Delta_h \neq 0$ unless $\delta_1 = \delta_3 = 0$ or $\delta_1 = \delta_2 = 0$

GCC, Idegawa, in progress

$$\begin{aligned} \frac{C_{h_1\chi\chi}}{m_{h_1}^2}\cos\alpha - \frac{C_{h_2\chi\chi}}{m_{h_2}^2}\sin\alpha &= \frac{A}{v_s} \bigg[\sin\alpha\cos\alpha \bigg\{ \frac{m_{h_1}^2 + \Delta_s}{m_{h_1}^2} - \frac{m_{h_2}^2 + \Delta_s}{m_{h_2}^2} \bigg\} + \Delta_h \bigg(\frac{\cos^2\alpha}{m_{h_1}^2} + \frac{\sin^2\alpha}{m_{h_2}^2} \bigg) \bigg] \\ &= 0 \quad \text{if } \Delta_h = 0 \text{ at } m_{h_1} = m_{h_2} \\ C_{h\chi\chi} &= \frac{A}{v_s} (C_{hs} + \Delta_h), \quad C_{s\chi\chi} = \frac{A}{v_s} (C_{ss} + \Delta_s) \\ & (H - S \text{ mixing}) \end{aligned}$$

the degenerate scalar scenario works only for limited H-S mixing term (not in general)

 h_1, h_2, A Does cancellation of DM-quark amplitudes still work beyond the leading order? NNNN

cf. pNG DM models → suppression mechanism does not work at 1-loop level

Azevedo etal, 1810.06105 Ishiwata, Toma, 1810.08139 Alanne etal, 2008.09605 Glaus etal, 2008.12985 Abe, Hamada, 2205.11919

N

finite contribution?

N

N

N

N

N

GCC, Idegawa, in progress

Summary

degenerate scalar scenario → an alternative of "*Nightmare* scenario"@LHC besides super-heavy particles/ultra-weak int.

DM-quark scattering amplitudes are cancelled when $m_{h_1} \sim m_{h_2}$

recoil mass dist. @ILC w/ 2 $ab^{-1} \rightarrow$ chance to test a degenerate scalar scenario w/ $\Delta m \ge 0.2$ GeV

degenerate scalar scenario restricts soft breaking terms w/ D \geq 3 $(|H|^2S, |H|^2S^2)$

cancellation of DM-quark amplitudes in the degenerate scalar scenario@1-loop level?

