標準模型粒子との散乱が抑制される熱的 暗異物質模型

阿部智広 (東京理科大学) 濱田祐 (KEK)

arXiv:2205.11919

published in PTEP

WIMP (or thermal DM)

- WIMP (Weakly Interacting Massive Particle)
 - ・標準模型と何らか弱く相互作用する
 - ・凍結機構でエネルギー密度が説明される
 - ・様々な相関があって検証可能性が高いのが魅力

annihilation (thermal relic, indirect detection)

DMのSMへの対消滅は 維持したい $(\langle \sigma v \rangle = 10^{-26} \text{ cm}^3/\text{s})$

DM-SM散乱は抑制しないといけない $(\sigma_{\rm SI} \ll O(10^{-46}) \, {\rm cm}^2)$

 10^{-4} $m_{\rm DM} = 100 \ {\rm GeV}$ 10^{-4} WIMP-nucleon $\sigma_{\rm SI}$ [cm²] 10^{-6} 10^{-45} 10⁻⁸ 10⁻⁴⁶ Y $\langle \sigma v \rangle = 1.965 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}, \ \Omega h^2 = 1.070$ 10⁻¹⁰ $\langle \sigma v \rangle = 1.965 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}, \ \Omega h^2 = 0.1200$ 10⁻⁴⁷ $\langle \sigma v \rangle = 1.965 \times 10^{-25} \text{ cm}^3 \text{ s}^{-1}, \ \Omega h^2 = 0.0133$ 10⁻¹² 3 10^{-48} 10^{-14} 10 10 100 1000 10^{4} X

We have to

素朴には両立しない ので何かアイデアが 必要

Tomohiro Abe (TUS) 3

suppress this for as

振幅が運動量依存するなら

- DM-SM散乱(直接検出)の断面積は消える
- ・ 対消滅断面積は残る

振幅が運動量依存するなら

- $t = q^2 \simeq 0$ @直接検出実験
- $s = q^2 \simeq 4m_{\gamma}^2$ @DMの対消滅

▶ 凍結機構を使いつつ直接検出実験の結果を説明可能

- 擬南部ゴールドストン暗黒物質 (pNG DM) [Gross-Lebedev-Toma ('17)]
- ・NGボソンは散乱振幅が運動量の2乗に比例する
- 対称性を破る項を入れて質量を与える
- 次元2の項で対称性を破るなら直接実験は抑制される

擬南部ゴールドストンDM

- ► $t = q^2 \simeq 0$ @直接検出実験
- $s = q^2 \simeq 4m_{\gamma}^2$ @DMの対消滅

先行研究

SM + a gauge singlet complex scalar (S) [Gross-Lebedev-Toma ('17)] ・U(1)_{global}を要求 ($S \rightarrow e^{i\theta}S$, SMは singlet) · U(1)global の自発的破れで NG boson ($S = v_s + \sigma + i\chi \, \sigma \, \chi$) \cdot U(1)global を explicit に破る項 (S^2 +h.c) を入れておいて pNG にする $\cdot S \rightarrow S^{\dagger}$ を仮定 (dark sector の CPを仮定) $\cdot \sigma \rightarrow \sigma, \chi \rightarrow -\chi$ となるので χ が安定化し DM 候補となる ・いっけんよさそうだが…

 $V = -\frac{\mu_H^2}{2}H^{\dagger}H + \frac{\lambda_H}{2}(H^{\dagger}H)^2 - \frac{\mu_S^2}{2}|S|^2 + \frac{\lambda_S}{2}|S|^4 + \lambda_{HS}H^{\dagger}H|S|^2 + \left(-\frac{\mu_S'^2}{4}S^2 + (h.c.)\right)$

SM Higgs

U(1) global symmetric

模型の問題点

問題のない模型を構築しなければならない

scalar potential

explicit U(1) breaking

·次元1,3の explicit に破る項 (S,S³,SH[†]H,…) は0だと「仮定」する (あると NG boson の性質が失われ, 直接検出実験で模型が棄却される) · Z_2 対称性 ($S \rightarrow -S$) を自発的に破るのでドメインウォールの問題がある

問題のないpNGDMの例

- 次元1でも U(1)global をやぶる (曺さん出川さんのトーク参照) $\cdot S + S^{\dagger}$ をいれる
 - $S \rightarrow -S$ なる対称性がないので domain-wall problem は無い
- $U(1)_{global} \times [gauged U(1)_{B-L}]$ にする
 - ・ゲージ対称性のためにSの1次や3次は禁止できる
 - ·DM が崩壊する

疑問:ゲージ対称性を利用した模型でVEV の hierarchy の無いようにできるか?

できる [T. Abe, Hamada ('23)]

[S. Abe, Cho, Mawatari ('21)] [Cho, Idegawa, Senaha ('21, '22)] [Cho, Idegawa, Sugihara ('23)]

·NG boson の性質も失われるので直接検出で制限 → 縮退スカラーシナリオ

[Y. Abe, Toma, Tsumura ('20)] [Y. Abe, Toma, Tsumura, Yamatsu ('21)] [Okada, Raut, Shafi ('21)] [Okada, Raut, Shafi, Thapa ('21)]

·長寿命にするために U(1)global を破る VEV ≪ U(1)B-L を破る VEV とする

やりたいこと

以下のルールで pNG 模型を構築する

- ·都合の悪い項はゲージ対称性で禁止したい
- ・離散対称性を自発的に破らないようにしたい
- ·SMにくらべて新しく導入される VEV は1つまで

 $\begin{array}{ll} \text{global} & \text{gauge} & \langle \phi \rangle & \text{global} \\ SU(2)_g \times U(1)_X & \stackrel{\langle \phi \rangle}{\longrightarrow} U(1)_D \end{array}$

explicit breaking $\longrightarrow U(1)_a$

doublet field $\phi \qquad \phi \rightarrow e^{iT^a \theta^a_g} e^{i\frac{1}{2}\theta_X(x)} \phi$

 $U(1)_D \qquad \phi \to e^{iT^3\theta_D} e^{i\frac{1}{2}\theta_D} \phi = \begin{pmatrix} e^{i\theta_D} & 0\\ 0 & 1 \end{pmatrix} \phi$

DMセクターの対称性

DM の安定性

3 NGBs = 1 would-be NGB + 2 NGBs → pNGBs

H (JSM Higgs $U(1)_q \times U(1)_X$

ポテンシャル $V_{\rm BSM} = \mu_{\phi}^2 \phi^{\dagger} \phi + \lambda_{\phi} \left(\phi^{\dagger} \phi\right)^2 + \lambda_{H\phi} (H^{\dagger} H) \left(\phi^{\dagger} \phi\right) + \mu_{\chi}^2 \left(\phi^{\dagger} T^3 \phi\right)$ $SU(2)_q \times U(1)_X$

新粒子 χ : pNG boson (DM) V_{μ} : gauge boson

h': extra scalar (DMセクターと SMセクターを繋ぐ)

DMセクターに荷電共役対称性を課す

kinetic mixing が禁止できる

$$-\frac{1}{4}B^{\mu\nu}B_{\mu\nu} - \frac{1}{4}V^{\mu\nu}V_{\mu\nu} - \frac{\kappa}{2}B^{\mu\nu}V_{\mu\nu}$$

kinetic mixing あると直接検出で排除されるので禁止する

 $\phi \to \phi^*, \ V_\mu \to -V_\mu$

V, はU(1)xのゲージ場

V も安定になりうる

- $V \rightarrow \chi \chi^{\dagger}$ でのみ崩壊する
- $m_V > 2m_\gamma$ なら χ のみが DM

- $m_V < 2m_\chi \ x \le \chi \le V \le DM$
- Vが DM だと直接検出で排除される

DM-SM 散乱は抑制される

- *t* ≃ 0 @直接検出実験
- ・対消滅は上の式で $t \rightarrow s \simeq 4m_{\gamma}^2$ となるので抑制されない
- freeze-out の範囲で直接検出実験の null result を説明可能

散乱振幅

$$=-i\frac{m_q}{vv_s}s_{\theta_h}c_{\theta_h}\bar{u}u\left(-\frac{1}{t-m_h^2}+\frac{1}{t-m_{h'}^2}\right)t$$

relic abundance $\frac{\mathrm{d}n_{\chi}}{\mathrm{d}t} + 3Hn_{\chi} = -\langle \sigma v \rangle \left(n_{\chi}^2 - n_{\chi,eq}^2 \right)$

暗黒物質の対消滅過程

・DM-SM 散乱と異なり抑制されない $m_y \simeq m_h/2$ および $m_y \simeq m_{h'}/2$ では、共鳴現象で $\langle \sigma v \rangle$ が大きくなる ・共鳴の起こる領域では $\chi\chi h$ 結合を小さくして $\Omega h^2 = 0.12$ を説明する

$\Omega h^2 = 0.12 \ となるパラメ-タ$ Higgs invisible decay 探索@LHCで排除 抵触 10⁰ Qh? == DM-h n coupling v/v_{S} 10^{-3} 10² 10³ m_{γ}

perturbative Unitarity bound (scalar quartic coupings) に

perturbative Unitarity bound (gauge coupling) に抵触 (ここでは $m_V = 3m_\gamma$ を仮定)

$$\sin\theta = 0.1$$

 $m_{h'} = 300 \text{ GeV}$

beyond the tree level analysis

- ・DM-SM 散乱は抑制されるのはツリーレベルの結果
- 制しなくなる [Ishiwata, Toma, Tsumura ('18), Azevedo et al ('19), Glaus et al ('20)]

散乱振隔

$$=-i\frac{m_q}{vv_s}s_{\theta_h}c_{\theta_h}\bar{u}u\left(-\frac{1}{t-m_h^2}+\frac{1}{t-m_{h'}^2}\right)t$$

soft breaking term (= DM mass)のために NG ボソンの性質はなくなる

・DM mass に依存するループ補正によって DM-SM 散乱が運動量移行に抑

・ゲージ結合が大きところはループ補正が大きい可能性あり → 計算しよう

散乱振幅@loop level

- ・たくさんのダイアグラム
- ・キャンセルしたりする
- ・効率よく計算したい \rightarrow NG boson の性質を使う

散乱振幅@loop level

- ·NG boson になら、移行運動量0極限で振幅は消える(ツリーレベル参照)
- ·NG boson になる極限 = explicit breaking term が消える極限 = massless DM極限

散乱振幅 $\mathcal{M}(m_{\chi})$ は $\mathcal{M}(0) = 0$ を満たす

$$\mathcal{M}(m_{\chi}) = \mathcal{M}(m_{\chi}) - \mathcal{M}(0)$$
$$= \sum_{j} \left(\mathcal{M}_{j}(m_{\chi}) - \mathcal{M}_{j}(0) \right)$$

- . ダイアグラムごとに m, に依存しない項を差っ引けば良い
- ・内線に χ が現れないダイアグラムは計算しなくて良い

計算すべきダイアグラム

(a)

(b)

(d)

(C)

- ・計算すべきダイアグラムの数はだい ぶ減る
- ・手計算でも十分できる
- ・結果はごちゃごちゃするので略
- ・数値を次で見せる
- ・ゲージが飛ぶ寄与以外は無視してい いほど小さい
- ・ゲージ結合がでかいところだけ重要

h, h'

$\sigma_{si}@1-loop$

- ・
 のsi は現在の制限(LZ実験)よりも
 小さい
- ・大きいところはゲージ結合が大きい のでそもそも摂動計算が破綻してい る
- ・大抵の領域は ν floor 以下なので 従来の直接検出による検証は難しい

Summary

- $SU(2)_{q} \times U(1)_{X} \rightarrow U(1)_{D}$ によるpNG DMを提案した
 - $SU(2)_{g}$ は大域的で $U(1)_{g}$ に陽に破れている
 - ・ $U(1)_{x}$ はゲージ対称性
 - $U(1)_D$ とDMセクターの荷電共役対称性で DM は安定

対称性で禁止できる

- ・ドメインウォール問題もない
- ・直接検出実験の結果と矛盾せず $\Omega h^2 = 0.12$ となる

まとめ

・先行研究では手で落としていた項が, この模型では U(1)_xゲージ

