レプトンフレーバーの破れを伴う 深非弾性散乱の断面積定式化

山中 真人 (横浜国立大学)

M. Takeuchi, Y. Uesaka and MY, PLB772 (2017) Y. Kiyo, M. Takeuchi, Y. Uesaka and MY, JHEP 04 (2022) 044 Y. Kiyo, M. Takeuchi, Y. Uesaka and MY, arXiv:2303.XXXXX

新物理の証拠、探索手段

標準理論 ≠ 万物の理論

残された謎の数々

- -- ニュートリノ質量の由来は?
- -- 暗黒物質/暗黒エネルギーの正体は?
- -- 物質・反物質非対称の起源は?
- -- なぜ6フレーバー?なぜ物質粒子質量は階層的??

J-PARC News - March 2013

https://phys.org/news

LFV過程の例

ミューオン-電子転換

©higgstan.com

観測量に直接顔を出さず

背後の物理をどう探り出すか

重要かつ必須

- 1. "未知"を多角的に描き出すため
 できる限り多くのLFV観測量
- 2. LFV理論パラメーターと観測量の
 正確な接続

The more LFV processes, the "elephant" is more clearly illustrated!

反応の中間状態に入る"未知"を間接的に検証

観測量に直接顔を出さず

Lepton Flavor Violating Deep-Inelastic Scattering (LFV-DIS)

- ロ 複数の実験で探索・クロスチェック可能 (LHeC, ν -factory, ILC, など)
- **ロ** タウハドロニックLFV ($\tau \rightarrow e\pi\pi$ 等)やLHCでの探索($pp \rightarrow \mu\tau$ 等)と相補的
- □ 偏極ビームを用いて、LFV演算子の左右度合を精査可能
- ロ イベント数が多大@固定標的実験:イベント数 \propto (ビーム強度 N_{ℓ_i})×(核子数 \propto mol数)

LFV媒介粒子とクォークの相互作用の分別

Flavor universal interaction type

M. Sher, I. Turan, PRD (2004), and so on

Flavor non-universal interaction type

<u>狙い:LFVパラメーターとDIS観測量の正確な接続</u>

LFV演算子

LFV相互作用(標準理論を最小拡張)

様々な模型に応用可能

拡張ヒッグス模型, レプトクォーク, Rパリティが敗れたSUSY, フレーバー 対称性模型, 余剰次元模型など

- □ LFV媒介粒子: スカラー粒子
- □ 設定 : 媒介粒子は主に重いフェルミオンと結合

クォークとの結合(フレーバー対角なものに限定)A) クォーク質量に比例 $\rho_{cc}^S: \rho_{bb}^S: \rho_{tt}^S = m_c: m_b: m_t$ B) 1フレーバーのみに結合例: $\rho_{bb}^S \neq 0, \ \rho_{cc}^S = \rho_{tt}^S = 0$

LFV演算子

 $\phi_{s}gg$ 有効結合

LFVパラメーターとDIS観測量の高精度接続のため、 移行運動量依存性などを精確な取り入れながら!

 $\phi_{S}gg$ 有効結合

LFVパラメーターとDIS観測量の高精度接続のため、 移行運動量依存性などを精確な取り入れながら!

フォトン双極子LFV演算子 22 2222 q S, A ℓ_j ℓ_i S, A'

$$\mathcal{L}_{\text{dipole}} = -\frac{e}{2} m_j \sum_{X=S,A} \left(A_{ij}^X \bar{\ell}_j \sigma^{\mu\nu} P_L \ell_i F_{\mu\nu} + A_{ji}^X \bar{\ell}_j \sigma^{\mu\nu} P_R \ell_i F_{\mu\nu} \right)$$

$$A_{ij} = \frac{1}{16\pi^2 v^2} \left(A_1 + A_2^{t,b} + A_2^W \right)$$

例:媒介粒子質量の関数として求めた係数Aij in 2HDM

保介粒子質 量に 局感度	$m_{\phi} \; [\text{GeV}]$	125	200	300	400	500
	$10^3 \times \tilde{A}_1^f(r_{\tau/\phi})$	2.0025	0.8872	0.4345	0.2605	0.1747
夏 子 経由のDIS反応率 - - - - -	$10^3 \times \tilde{A}_2^{t,H}(r_{t/\phi})$	6.2431	4.6631	3.4720	2.7435	2.2504
こ有効	$10^3 imes \tilde{A}_2^{t,A}(r_{t/\phi})$	8.9039	6.5746	4.8361	3.7840	3.0785
	$10^3 \times \tilde{A}_2^{b,H}(r_{b/\phi})$	0.0407	0.0208	0.0114	0.0073	0.0052
	$10^3 imes \tilde{A}_2^{b,A}(r_{b/\phi})$	0.0508	0.0255	0.0138	0.0088	0.0062
	$10^3 \times \tilde{A}^W_{2,\phi}(r_{W/\phi})$	-14.0380	-8.8698	-5.1773	-2.9841	-1.5079

模型構造や妙

双極子LFV演 は模型判別に

断面積定式化

LFV-DIS $\ell_i N \rightarrow \ell_j X$ の素過程

本研究で新たに取り入れた重要要素 (1) ϕgg 結合 (2) D_{T} クターク数保存

ACOT scheme M. Aivazis, J. Collins, F. Olness, W. Tung, PRD50 (1994)

ACOT scheme M. Aivazis, J. Collins, F. Olness, W. Tung, PRD50 (1994)

数値解析

媒介粒子の質量は? $\mathcal{L}_{S} = -\sum_{i,j} \left(\rho_{ij}^{S} \bar{\ell}_{j} P_{L} \ell_{i} \phi_{S} + h.c. \right) - \sum_{q} \rho_{qq}^{S} \bar{q} q \phi_{S}$ LFV結合定数の大きさは? どのクォークが結合?

媒介粒子質量依存性

cross section [fb]

媒介粒子質量依存性

cross section [fb]

$E_e = 100 \text{ GeV}, m_S = 10 \text{ GeV}$

◆ 素過程ごとにはっきりと異なる運動量分布

◆ どのLFV演算子が支配的か(=背後の物理は誰か)に高感度

◆ T LFV崩壊の情報と繋げ感度倍増

A. Celis, V. Cirigliano, E. Passemar, PRD89 (2014) T. Husek, K. Monsalvez-Pozo, J. Portoles, JHEP01 (2021)

$E_e = 100 \text{ GeV}, m_S = 10 \text{ GeV}$

媒介粒子とクォークの結合

ピーク位置と微分断面積 $d\sigma/dQ$ に大きな違い(for $E_e = 10$ TeV)

媒介粒子とクォークの結合

ピーク位置と微分断面積 $d\sigma/dQ$ に大きな違い(for $E_e = 10$ TeV)

媒介粒子-グルーオン-グルーオン結合g_{sgg}: 以下の2物理量に強く依存 (i) 移行運動量 $\sqrt{Q^2}$ (ii) 内線クォーク質量 m_a

媒介粒子とクォークの結合

ピーク位置と微分断面積 $d\sigma/dQ$ に大きな違い(for $E_e = 10$ TeV)

典型的運動量移行 媒介粒子-グルーオン-グルーオン結合gsgg: $Q_{typ} \simeq 35 \text{GeV} \text{ for } E_e = 10 \text{TeV}$ 以下の2物理量に強く依存 ╈ (i) 移行運動量 $\sqrt{Q^2}$ (ii) 内線クォーク質量 m_a $Q_{typ} \simeq 5 \text{GeV}$ for $E_e = 100 \text{GeV}$

媒介粒子とクォークの結合

