What is the source of the gravitational waves detected by NANOGrav and other PTA experiments?

John Ellis

Gravitational Wave Spectrum

Pulsar Timing Arrays

NANOGrav & other PTAs see nanoHz GW signal

The Biggest Bangs since the Big Bang?

Cosmic Strings?

Cosmological Phase Transition?

Simulation of bubble collisions – D. Weir

Outline

- Supermassive black hole binaries?
- Analysis of NANOGrav PTA data
- Better fit if binaries interact with environment
- BSM scenarios:
 - Strings, phase transition, domain walls, 1st/2nd-order inflationary scenarios, axion

• All fit NANOGrav data better than BH binaries!

JE & Lewicki: arXiv:2009.06555; JE, Fairbairn, Hütsi, Raidal, Urrutia, Vaskonen & Veermäe: arXiv:2301.13854; JE, Fairbairn, Hütsi, Raidal', Urrutia, Vaskonen & Veermäe: arXiv:2306.17021; JE, Lewicki, Lin, & Vaskonen: arXiv:2306.17147;

How to Make a Supermassive BH?

SMBHs from mergers of intermediate-mass BHs (IMBHs)?

BH Merger Rate Estimate

BH merger rate $R_{\rm BH}$ $\frac{\mathrm{d}R_{\rm BH}}{\mathrm{d}m_1\mathrm{d}m_2} \approx p_{\rm BH} \frac{\mathrm{d}M_1}{\mathrm{d}m_1} \frac{\mathrm{d}M_2}{\mathrm{d}m_2} \frac{\mathrm{d}R_h}{\mathrm{d}M_1\mathrm{d}M_2}$

where R_h is halo merger rate calculated using Extended Press-Schechter formalism,

$$p_{\rm BH} \equiv p_{\rm occ}(m_1) p_{\rm occ}(m_2) p_{\rm merg}$$

is merger probability, and

strength of IPTA signal can be fitted by constant $p_{\rm BH}$

Stochastic GW Background from BH Mergers

E, Fairbairn, Hütsi, Raidal, Urrutia, Vaskonen & Veermäe: arXiv:2301.13854

Detecting IMBH Mergers

LISA and AEDGE would observe similar numbers of IMBH mergers AEDGE mergers would have been observed by LISA during infall Opportunities to test GR, multi-messenger astronomy

 $\mathcal{M}_0 = \text{chirp mass}, \eta = \text{mass ratio}$

IE, Fairbairn, Hütsi, Raidal, Urrutia, Vaskonen & Veermäe: arXiv:2301.13854

Expect spectral index $\gamma=13/3$ for SMBH binaries: not a good fit Evidence for GWs: Hellings-Downs angular correlation Bayes factor ~200

IPTA Data Compilation

NANOGrav GWs arXiv:2306.16213

γcurn

Range of γ depends on treatment of pulsar noise (spectrum not fitted well by single power law)

JE, Fairbairn, Hütsi, Raidal', Urrutia, Vaskonen & Veermäe: arXiv:2306.17021

Environmental energy loss AlON

- Interactions with gas, stars, dark matter?
- Total energy loss rate: $\dot{E} = -\dot{E}_{\rm GW} \dot{E}_{\rm env}$
- Characteristic time scales: $t_{\rm GW} \equiv E/\dot{E}_{\rm GW} = 4\tau$, $t_{\rm env} \equiv E/\dot{E}_{\rm env}$

• Where
$$\tau = \frac{5}{256} (\pi f_r)^{-8/3} \mathcal{M}^{-5/3}$$

- Energy radiated in GWs reduced because of accelerated evolution: $\frac{dE_{GW}}{d\ln f_r} = \frac{1}{3} \frac{(\pi f_r)^{\frac{2}{3}} \mathcal{M}^{\frac{5}{3}}}{1 + t_{GW}/t_{env}}$
- Phenomenological parametrization:

$$\frac{t_{\rm env}}{t_{\rm GW}} = \left(\frac{f_r}{f_{\rm GW}}\right)^{\alpha}, \quad f_{\rm GW} = f_{\rm ref} \left(\frac{\mathcal{M}}{10^9 M_{\rm sun}}\right)^{-\beta}$$

IE, Fairbairn, Hütsi, Raidal', Urrutia, Vaskonen & Veermäe: arXiv:2306.17021

Mechanisms for Energy Loss

SMBH Fits to NANOGrav Alon

SMBH binary model fits NANOGrav data better if environmental energy-loss effects are included

Astrophysical Interpretations AION

Fits use overlaps of data and model violins in each bin **NB: Fits go beyond simple power-law approximations** Better fit to spectrum if evolution driven by both environment & GWs

E, Fairbairn, Hütsi, Raidal', Urrutia, Vaskonen & Veermäe: arXiv:2306.17021

GWs + Environment? Alon

Bigger chance to see specific binaries if evolution also driven by environment (0.8 events vs 0.4 if GW only, most likely ~ 5 nHz)

IE, Fairbairn, Hütsi, Raidal', Urrutia, Vaskonen & Veermäe: arXiv:2306.17021

NANOgrav and EPTA both report hint of up-fluctuation at ~ 4 nHz

Region of parameter space of SMBH + environment: probability > 5%

Probing Cosmic Strings

String Intercommutation

U(1) bosonic strings intercommute with probability p = 1Other strings (super, QCD-like, ...) may have p < 1

Calculation of GWs from Cosmic Strings

- Use Velocity-dependent One-Scale (VOS) Model
- Network of strings produces loops, lengths:

$$\ell = \alpha_{\ell} t_i - \Gamma G \mu (t - t_i)$$

• Loops emit at normal mode frequencies:

$$f = \frac{a(t)}{a(t_0)} \frac{2\kappa}{\alpha_\ell t_i - \prod_{\infty} G\mu(\tilde{t} - t_i)}$$

• Density of GWs: $\Omega_{GW}^{CS}(f) = \sum_{k=1}^{\infty} k \Gamma^{(k)} \Omega_{GW}^{(k)}(f), \Gamma^{(k)} = \Gamma k^{-\frac{4}{3}} / (\sum_{m=1}^{\infty} m^{-\frac{4}{3}})$

$$\Omega_{GW}^{(k)}(f) = \frac{16\pi}{3H_0^2} \frac{(0.1) (G\mu)^2}{\alpha_\ell (\alpha_\ell + \Gamma G\mu)} \frac{1}{f} \times \int_{t_F}^{t_0} d\tilde{t} \ \frac{C_{eff}(t_i)}{t_i^4} \left(\frac{a(\tilde{t})}{a(t_0)}\right)^5 \left(\frac{a(t_i)}{a(\tilde{t})}\right)^3 \Theta(t_i - t_F)$$

where factor 0.1, $\Gamma \simeq 50$ from simulations,

 $C_{eff} = 5.4 (0.39)$ during radiation (matter) domination

Superstrings vs LVK Alon

(Super)string model compatible with LVK for $p \sim 0.001 - 0.1$

Superstring Fit to NANOGrav Alon

(Super)string model compatible with LVK for string tension $G\mu \sim 10^{-12} - 10^{-11}$, intercommutation probability $p \sim 0.001 - 0.01$

Superstring + SMBH Fit Alon

Effect of Matter Domination Alon

Late period of matter domination could push superstrings beyond LVK, but still detectable by LISA, AION/AEDGE, ET

JE, Lewicki, Lin, & Vaskonen: arXiv:2306.17147

Could also push superstrings beyond LVK, but still detectable by LISA, AION/AEDGE, ET

Probing Cosmological Phase Transitions

Simulation of bubble collisions – D. Weir

Phase Transition Fit to NANOGrav AION

Domain Wall Fit to NANOGrav Alor

Domain wall model compatible with cosmology for annihilation temperature $T_{\rm ann} \sim {\rm GeV}$ (hidden sector)

Axion Fit to NANOGrav Alon

Scalar-Induced GWs Fit to NANOGrav AION

First-Order GWs Fit to NANOGrav Alon

Extension of Fits to Higher Frequencies AION

Results For NANOGrav Fits AION

Results from Multi-Model Analysis (MMA)

Scenario	Best-fit parameters	ΔBIC	Signatures
GW-driven SMBH binaries	$p_{ m BH}=0.07$	6.0	FAPS, LISA, mid- f , LVK, ET
GW + environment-driven	$p_{ m BH} = 0.84$	Baseline	FAPS, LISA, mid- f , LVK, ET
SMBH binaries	$\alpha = 2.0$	(BIC = 53.9)	
	$f_{ m ref} = 34 { m nHz}$		
Cosmic (super)strings	$G\mu = 2 \times 10^{-12}$	-1.2	FAPS, LISA, mid- f , LVK, ET
(CS)	$p = 6.3 \times 10^{-3}$	(4.6)	
Phase transition	$T_* = 0.34 \text{ GeV}$	-4.9	FAPS, LISA, mid-f, LVK, ET
(PT)	$\beta/H = 6.0$	(2.9)	
Domain walls	$T_{\rm ann} = 0.85 { m GeV}$	-5.7	FAPS, LISA?, mid- f , LVK, ET
(DWs)	$lpha_* = 0.11$	(2.2)	
Scalar-induced GWs	$k_* = 10^{7.7}/{ m Mpc}$	-2.1	FAPS, LISA, mid-f, LVK, ET
(SIGWs)	A = 0.06	(5.8)	
	$\Delta = 0.21$		
First-order GWs	$\log_{10} r = -14$	-2.0	FAPS, LISA, mid-f, LVK, ET
(FOGWs)	$n_{ m t}=2.6$	(6.0)	
	$T_{ m rh}=-0.67{ m GeV}$		
"Audible" axions	$m_a = 3.1 \times 10^{-11} \mathrm{eV}$	-4.2	FAPS, LISA, mid-f, LVK, ET
	$\int f_a = 0.87 M_{ m P}$	(3.7)	

 $FAPS \equiv fluctuations, anisotropies, polarization, sources, mid-f \equiv mid-frequency experiment, e.g., AION [308], AEDGE [310], LVK \equiv LIGO/Virgo/KAGRA [161–163], ET \equiv Einstein Telescope [312] (or Cosmic Explorer [313]), signature \equiv not detectable$

Quo Vadis NANOGrav?

- Astrophysics or fundamental physics?
- Biggest bangs since the Big Bang, or physics beyond the SM?
- SMBH binaries driven by GWs alone disfavoured
- SMBH binaries driven by GWs and environmental effects fit better
- Better fits with cosmological BSM models
- Discrimination possible with future measurements: fluctuations, anisotropies, polarization, experiments at higher frequencies - including atom interferometers
- Time and more data will tell!