Gravitational waves and physics of compact objects

Koutarou Kyutoku Kyoto University

Plan of the talk

- 1. What we have learned: GW170817
- 2. What we will learn in the future
- 3. Summary

1. What we have learned: GW170817

Observed event by the end of O3

2 binary neutron star mergers appear to be confirmed

Neutron star

Remnant of massive stars

Mostly consists of neutrons ~1.4 solar mass, ~10km -> density higher than nuclear saturation density

"a huge nucleus"

Natural arena for QCD and (extreme) nuclear physics

Multimessenger event: GW170817

First Cosmic Event Observed in Gravitational Waves and Light

Colliding Neutron Stars Mark New Beginning of Discoveries

Collision creates light across the entire electromagnetic spectrum. Joint observations independently confirm Einstein's General Theory of Relativity, help measure the age of the Universe, and provide clues to the origins of heavy elements like gold and platinum

Gravitational wave lasted over 100 second

On August 17, 2017, 12:41 UTC, LIGO (US) and Virgo (Europe) detect gravitational waves from the merger of two neutron stars, each around 1.5 times the mass of our Sun. This is the first detection of spacetime ripples from neutron stars. Within two seconds, NASA's Fermi Gamma-ray Space Telescope detects a short gamma-ray burst from a region of the sky overlapping the LIGO/Virgo position. Optical telescope observations pinpoint the origin of this signal to NGC 4993, a galaxy located 130 million light years distant.

https://www.ligo.org/detections/GW170817/images-GW170817/gatech-moviestill2.png

Tech Astrophysic

GRB 170817A at 1.7s after merger

© LIGO/Virgo; Fermi; INTEGRAL; NASA/DOE; NSF; EGO; ESA

Fermi

Reported 16 seconds after detection

LIGO-Virgo

Reported 27 minutes after detection

INTEGRAL

Reported 66 minutes after detection

2023/11/7

The difference of speeds in GW/EM

Timing difference $\Delta t = (D/v_{\rm GW}) - (D/v_{\rm EM}) = 1.7 \text{s}$ renders the velocity difference $\Delta v \coloneqq v_{\rm GW} - v_{\rm EM}$ $-3 \times 10^{-15} \le \frac{\Delta v}{v_{\rm EM}} \le 7 \times 10^{-16}$

if the difference at the source is [0:10]s (model!)

- Lower limit: gravitational delay 10s ->1.7s
- Upper limit: electromagnetic delay 0s -> 1.7s

Although the precise physics of GRB is not understood, multiple events will alleviate model dependence

Kilonova and host galaxy

The host galaxy NGC 4993 with the redshift z~0.01

Gravitational-wave cosmology

More detections, more precise determination

Distance-inclination degeneracy

 $\Delta \iota < 5^{\circ}$ is possible with Virgo or KAGRA [e.g., Arun+ 2014]

Electromagnetic angle inference?

Statistical errors can be reduced at the cost of possibly introducing uncontrollable *systematic* errors

e.g., the jet and inclination angles may be different

Hayashi+KK+ (2022) Poynting luminosity for a black hole-neutron star binary

t = 400.20 ms

 $\begin{array}{c} 2.0 \times 10^{49} \\ 1.5 \times 10^{49} \\ 1.0 \times 10^{49} \\ 5.0 \times 10^{48} \\ 5.0 \times 10^{0} \\ -5.0 \times 10^{48} \\ -5.0 \times 10^{48} \\ -5.0 \times 10^{49} \\ -1.5 \times 10^{49} \\ -1.5 \times 10^{49} \end{array}$

 -2.0×10^{49}

 $\begin{array}{c} 1.5 \times 10^{49} \\ 1.0 \times 10^{49} \\ 5.0 \times 10^{48} \\ 0.0 \times 10^{0} \\ -5.0 \times 10^{48} \\ 0.0 \times 10^{0} \\ -5.0 \times 10^{48} \\ 0.0 \times 10^{0} \\ -1.0 \times 10^{49} \\ -1.5 \times 10^{49} \\ -2.0 \times 10^{49} \end{array}$

t=1500.38 ms

 $\begin{array}{c} 2.0 \times 10^{49} \\ 1.5 \times 10^{49} \\ 1.0 \times 10^{49} \\ 5.0 \times 10^{48} \\ -0.0 \times 10^{0} \\ -5.0 \times 10^{48} \\ -1.0 \times 10^{49} \\ -1.5 \times 10^{49} \end{array}$

 -2.0×10^{49}

t = 2000.02 ms

t = 1000.26 ms

 2.0×10^{49}

Nuclear-matter equation of state

Note: not need to observe the radius, and other quantities may be fine We want to know the realistic equation of state, that uniquely determines the mass-radius relation

Quadrupolar tidal deformability

Leading-order finite-size effect on orbital evolution (strongly correlated with the neutron-star radius)

$$\Lambda = G\lambda \left(\frac{c^2}{GM}\right)^5 = \frac{2}{3}k \left(\frac{c^2R}{GM}\right)^5 \propto R^5$$

 $k \sim 0.1$: (second/electric) tidal Love number

Numerical waveform

Binaries merge earlier for stiffer equations of state This allows us to measure the tidal deformablity

Constraint from GW170817

Systematic bias is only ~100 and currently negligible but may become problematic in the foreseeable future

Current understanding

The equation of state has already been constrained and will be constrained more severely in the near future

2. What we will learn in the future

Third-generation detector

Einstein Telescope, Cosmic Explorer ... aiming at more precise understanding of already-detected binaries

What should we understand then?

Moderate-density (around twice the saturation density) will be understood precisely by a lot of observations

On the basis of this idea, we would like to understand properties of ultrahigh-density matter

Future high-frequency observation

The high density requires high-frequency observations

$$f \sim \sqrt{G\rho}$$

Some proposals are made for postmerger signals

^{2023/11/7}

QCD phase diagram

What kind of transition occurs from hadrons to quarks?

Current view of the transition

Smooth crossover transition might be realistic

Crossover vs. 1st order PT

Crossover Smoothly connects two limits Note: we need to explain 2 solar mass neutron stars

1st-order phase transition

Only very high density allow strong phase transition... No effect on astrophysics? [see also Huang+ (2022), Kedia+ (2022)]

Black-hole formation as a key

Gravitational emission suddenly ends for crossover because of the gravitational collapse of the remnant

Did GW170817 form a black hole?

Nobody knows the answer Important for

- QCD phase structure
- gamma-ray burst
- r-process and kilonova

Gravitational waves are Emitted for 10-100ms at kHz and will be the key [neutrinos? Kyutoku-Kashiyama 2018]

LIGO&Virgo&Fermi&INTEGRAL (2017)

Distinguishability in data analysis

AdLIGO is insufficient even at design sensitivity (left) Third-generation detectors may do at >100Mpc (right)

3. Summary

Summary

- Multimessenger observations of binary-neutron-star mergers have delivered important information about theory of gravity and cosmology.
- The neutron-star equation of state is constrained by measuring tidal deformability from inspiral gravitational waveforms.
- In the future, postmerger gravitational waveforms may enable us to study the QCD phase diagram via the gravitational collapse of merger remnants.

2023/11/7

Appendix

Gravitational-wave detectors

http://gwcenter.icrr.u-tokyo.ac.jp/wp-content/themes/lcgt/images/img_abt_lcgt.jpg

KAGRA (Kamioka, Japan)

Advanced LIGO (Hanford/Livingston, USA)

https://www.advancedligo.mit.edu/graphics/summary01.jpg

Advanced Virgo (Pisa, Italy)

http://virgopisa.df.unipi.it/sites/virgopisa.df.unipi.it.virgopisa/files/banner/virgo.jpg

Observation plan

O4 will continue throughout 2024 with improvement

O5 is planned to start from the beginning of 2027

Various phases of coalescence

Current constraint

~ 11.5 - 13.5km for typical-mass neutron stars?

Strong correlation of $\widetilde{\Lambda}-\mathcal{M}_{\mathcal{C}}$

Role of theoretical templates

Parameters of binaries are estimated by measuring the match between data and theoretical waveforms Accurate theoretical models are indispensable

Uncertainty in the waveform model

1 radian difference usually makes differences Current systematic errors are larger than 1 radian We need accurate waveforms for better estimation

Necessity of numerical simulations

The amplitude maximum comes after the contact

- Gravity (post-Newtonian correction) is nonlinear
- Hydrodynamics (tidal effect) is also nonlinear Analytic computations cannot be fully accurate

Waveform library

https://www2.yukawa.kyoto-u.ac.jp/~nr_kyoto/SACRA_PUB/catalog.html

Released Model List

									Serach:					
Model name 🔶	m ₁ ¢	m ₂ ¢	m ₀ (=m ₁ +m ₂) ♦	q (=m₁/m₂) \$	η \$	M _c ¢	EOS name 🔶	^1 ¢	^2 ¢	λ¢	m ₀ Ω ₀ ≑	N \$	Reference \$	
<u>15H 135 135 00155 182 135</u>	1.35	1.35	2.7	1	0.25	1.17524	15H	1211	1211	1211	0.0155	182	Link	
<u>15H 135 135 00155 150 135</u>	1.35	1.35	2.7	1	0.25	1.17524	15H	1211	1211	1211	0.0155	150	Link	
<u>15H 135 135 00155 130 135</u>	1.35	1.35	2.7	1	0.25	1.17524	15H	1211	1211	1211	0.0155	130	<u>Link</u>	
<u>15H 135 135 00155 110 135</u>	1.35	1.35	2.7	1	0.25	1.17524	15H	1211	1211	1211	0.0155	110	Link	
<u>15H 135 135 00155 102 135</u>	1.35	1.35	2.7	1	0.25	1.17524	15H	1211	1211	1211	0.0155	102	Link	
<u>15H 135 135 00155 90 135</u>	1.35	1.35	2.7	1	0.25	1.17524	15H	1211	1211	1211	0.0155	90	Link	
125H 135 135 00155 182 135	1.35	1.35	2.7	1	0.25	1.17524	125H	863	863	863	0.0155	182	Link	
125H 135 135 00155 150 135	1.35	1.35	2.7	1	0.25	1.17524	125H	863	863	863	0.0155	150	Link	
<u>125H 135 135 00155 130 135</u>	1.35	1.35	2.7	1	0.25	1.17524	125H	863	863	863	0.0155	130	Link	
125H 135 135 00155 110 135	1.35	1.35	2.7	1	0.25	1.17524	125H	863	863	863	0.0155	110	Link	
125H 135 135 00155 102 135	1.35	1.35	2.7	1	0.25	1.17524	125H	863	863	863	0.0155	102	Link	
<u>125H 135 135 00155 90 135</u>	1.35	1.35	2.7	1	0.25	1.17524	125H	863	863	863	0.0155	90	<u>Link</u>	
H 135 135 00155 182 135	1.35	1.35	2.7	1	0.25	1.17524	н	607	607	607	0.0155	182	Link	
H 135 135 00155 150 135	1.35	1.35	2.7	1	0.25	1.17524	н	607	607	607	0.0155	150	Link	
<u>H 135 135 00155 130 135</u>	1.35	1.35	2.7	1	0.25	1.17524	н	607	607	607	0.0155	130	<u>Link</u>	
H 135 135 00155 110 135	1.35	1.35	2.7	1	0.25	1.17524	н	607	607	607	0.0155	110	Link	
H 135 135 00155 102 135	1.35	1.35	2.7	1	0.25	1.17524	н	607	607	607	0.0155	102	Link	
H 135 135 00155 90 135	1.35	1.35	2.7	1	0.25	1.17524	н	607	607	607	0.0155	90	Link	
HB 135 135 00155 182 135	1.35	1.35	2.7	1	0.25	1.17524	HB	422	422	422	0.0155	182	Link	
HB 135 135 00155 150 135	1.35	1.35	2.7	1	0.25	1.17524	HB	422	422	422	0.0155	150	<u>Link</u>	
<u>HB 135 135 00155 130 135</u>	1.35	1.35	2.7	1	0.25	1.17524	HB	422	422	422	0.0155	130	Link	
HB 135 135 00155 110 135	1.35	1.35	2.7	1	0.25	1.17524	HB	422	422	422	0.0155	110	Link	
<u>HB 135 135 00155 102 135</u>	1.35	1.35	2.7	1	0.25	1.17524	НВ	422	422	422	0.0155	102	Link	
HB 135 135 00155 90 135	1.35	1.35	2.7	1	0.25	1.17524	HB	422	422	422	0.0155	90	Link	
<u>B 135 135 00155 182 135</u>	1.35	1.35	2.7	1	0.25	1.17524	В	289	289	289	0.0155	182	Link	
<u>B 135 135 00155 150 135</u>	1.35	1.35	2.7	1	0.25	1.17524	В	289	289	289	0.0155	150	Link	
<u>B 135 135 00155 130 135</u>	1.35	1.35	2.7	1	0.25	1.17524	В	289	289	289	0.0155	130	Link	
<u>B 135 135 00155 110 135</u>	1.35	1.35	2.7	1	0.25	1.17524	В	289	289	289	0.0155	110	Link	
<u>B 135 135 00155 102 135</u>	1.35	1.35	2.7	1	0.25	1.17524	В	289	289	289	0.0155	102	Link	
<u>B 135 135 00155 90 135</u>	1.35	1.35	2.7	1	0.25	1.17524	В	289	289	289	0.0155	90	Link	
<u>15H 125 146 00155 182 135</u>	1.25	1.46	2.71	0.86	0.2485	1.17524	15H	1871	760	1200	0.0155	182	Link	
<u>15H 125 146 00155 150 135</u>	1.25	1.46	2.71	0.86	0.2485	1.17524	15H	1871	760	1200	0.0155	150	Link	
II		· · · · · · · · · · · · · · · · · · ·	·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·			· ··· □	· ¬	· ··· — ·	

Kyoto gravitational-wave model

TaylorF2: analytic, Post-Newton phase $(x \propto f^{2/3})$

$$\Psi_{\text{tidal}}^{2.5\text{PN}} = \frac{3}{128\eta} \left(-\frac{39}{2} \tilde{\Lambda} \right) x^{5/2} \left[1 + \frac{3115}{1248} x - \pi x^{3/2} + \frac{28024205}{3302208} x^2 - \frac{4283}{1092} \pi x^{5/2} \right]$$

+ correction terms associated w/ mass asymmetry

We introduce a nonlinear-in- $\widetilde{\Lambda}$ term (empirically)

$$-\frac{39}{2}\tilde{\Lambda}(1+12.55\tilde{\Lambda}^{2/3}x^{4.240})$$

This $\tilde{\Lambda}^{2/3}$ term well reproduces numerical relativity

Case of GW190425

Uncertainty in chiral EFT

The validity range is crucial for strength of constraints

Kilonova: AT 2017gfo

Indication of the large ejecta mass of $\sim 0.05 M_{\odot}$ It has been claimed that "this requires $\tilde{\Lambda} > 400$ "

A lot of counterexamples

Our conclusion: Lower limits on $\widetilde{\Lambda}$ can be derived only under restrictive assumptions

(vertical bars denote mass ejection efficiency from the disk, not errors)

Reason?

 M_{max} may not be strongly correlated with $\tilde{\Lambda} \propto R^{\sim 6}$ of typical-mass neutron stars

If the remnant survived moderately long due to the large value of M_{max} , there should be no reason that mass ejection is weak

Current view on the sound speed

Not stiff at low density, but $2M_{\odot}$ must be supported.

Conformal limit $(c_s^2/c^2 = 1/3)$ is likely to be exceeded

1st-order phase transition

Postmerger neutron stars emit quasiperiodic signals Strong first-order phase transition at very high density may be identified via the shift of the peak frequency

Structure of the merger remnant

Density/temperature structures are not very different Quarks appear at the high-n core and high-T envelope

Relation to independent studies

There exists other studies, e.g., those based on QHC We require explicitly that the perturbative QCD regime is realized after the crossover from hadronic matter

Cf: results with QHC (other study)

Soft equations of state at high density derive high postmerger frequency: also consistent with our results

Possible source of uncertainties

Finite-temperature effect? (modeled by "Γ_{th}")

We vary systematically the strength of thermal pressure

Neutrino effect? (neglected)

Its time scale is ~1s, much longer than our target

Magnetic-field effect? (neglected)

Its time scale is ~0.1s, again longer than our target

Grid resolution? (finite, of course)

Checked weak dependence but always a touch topic

Multimessenger observation

If the collapse is too early, no material is left outside and the kilonova cannot be as bright as AT 2017gfo

Our crossover model may be pass this test \mathbb{W} with mass asymmetry (1s-order PT trivially passes this test because no gravitational collapse)

