Ground-based gravitationalwave detector KAGRA –status and future prospects-

Takafumi Ushiba on behalf of the KAGRA Collaboration Institute for Cosmic Ray Research, UTokyo, Japan

Sources of GWs

New eyes to observe the Universe

K. Kokeyama JGW-G1808116

The Gravitational Wave Spectrum

Figure: M Evans

Target GW bands for laser interferometry

Currently GWs above 10 Hz can be detected by LIGO and Virgo.

The Gravitational Wave Spectrum

Figure: M Evans

Next generation GWDs and space GWDs will expand the window of GWs

2023/11/07

How can we detect GW signals?

- Initially, it was thought too faint to ever be useful.
 - \rightarrow Predicted amplitude is about 10⁻²¹ in 1960s to 1970s.
- In 1960s to 1970s, we changed our mind: it's so faint but measurable.
- We need just considering how to measure changes of distance of 10⁻¹⁸ m between two objects several kilometers apart.
- Finally, we decided to use a laser interferometer based on Michelson interferometer to detect the tiny displacement.

—Reduce any disturbances causing larger than 10⁻¹⁸ m displacement.

-Reduce noises accompanying with sensing the displacement.

How to reduce disturbances?

Passive

Design sensitivity of KAGRA

High and low frequency sensitivity is limited by disturbances ^{2023/11} and sensing noise, respectively

11

Global network and multi-messenger astronomy

Network duty factor during O3

[1256655618-1269363618]

- Triple interferometer [51.1%]
- Double interferometer [34.3%] •
- Single interferometer [11.3%]
- No interferometer [3.4%]

- 90 confident events in O1-O3.
- One successful follow-up observation: GW170817
 - GW, short GRB, and afterglow
- Counterpart was identified.
- Standard siren etc.
- Multiple-detector observation is essential for:
- better localization
- better duty cycle
- Increase of the number of detectors are important.

Past observing run

- 2 LIGO detectors
- GW150914: First detection of BBH merger.

First detection of NS-BH merger.

2020 Apr. (O3GK) Gravitational Wave Probe KAGRAsand GEO600 Beyond Standard Model @ OMU

Current and Future observing Run

- 4th Observing Run (O4) 2023 May. – 2025 Jan.
- 2 LIGO and KAGRA detectors started O4a run.
- KAGRA stopped O4a to improve sensitivity.
- LIGO continues observing run.
- Virgo and KAGRA plan to start the observing run from March and spring in 2024, respectively.

5th Observing Run (05)

- Starting time has not been decided yet.
- Detail term has also not been decided.

KAGRA

Gravitational Wave Probes of Physics Beyond Standard Model @ OMU Underground

KAGRA: Current detector configuration

Partially cooled Power Recycling Fabry Perot Michelson Interferometer (PRFPMI)

Status of previous observing run (O3GK)

Not only sensitivity but also stability improvement is important.

Noise budget during O3GK

Our 3 years after O3GK

VIS repair and upgrade for low freq.

Baffle installation for mid. freq.

2023/11/07

Several achievement on commissioning

Better stability

Local damping improvement

• Now PRFPMI can be maintained even in somewhat stormy days.

Alignment-sensing and control (ASC)

- Took time for wave-front sensing (WFS) in a strategic way; now WFS can be implemented for some global DoFs; drastically improved the contrast fluctuation.
- In addition, some noise structures and noise floor got better in the sensitivity curve.

Doppler phase noise cancellation

 For auxiliary green laser paths; now stable lock acquisition is possible even in somewhat stormy days.

T. Akutsu JGW-G2314966

2023/11/07

Gravitational Wave Probes of Physics Beyond Standard Model @ OMU 12

Several achievement on commissioning

Alignment sensing and control

- Internal laser power is drastically stabilized; and increased.
- Better AS contrast allows to do handover with smaller DARM offset.
- → Now ready to increase the input power from 1 W for O4b!

GWADW (May 22-26, 2023, Isola d'Elba, Italy)

24

Sensitivity history during O4 commissioning

Sensitivity when starting O4a

Target sensitivity of O4b

Noise budget of O4a sensitivity

- We have made noise budget of O4a sensitivity.
- It takes two months to make the noise budget, which is much faster than that during O3GK.
- We are now starting noise hunting to obtain better sensitivity.

Commissioning after O4a

We are now working hard to improve the sensitivity. What need to do:

- Achieve PRFPMI with DC readout with cooled mirrors.
- More robust and low noise alignment controls for IFO.
- Cooling sapphire mirrors at least below 100 K.
- Reduction of acoustic coupling around OMC.

Current cooling progress

All test masses except for ETMY was cooled down around 100K.

Mirror cooling

Cryocooler status

Some cryocoolers show instability of temperature, which would cause serious frosting on the mirror.

 \rightarrow ETMY is now warming up and we are now trying to solve the problem.

OMC suspension damper installation

2023/11/07

Summary

- O4 observing run has started since 24 of May with the better sensitivity than O3GK.
- KAGRA stopped observing run on 21 of June and restarted commissioning for sensitivity improvement.
- We need to further improve the sensitivity for achieving O4b target and the strategy on the commissioning is under discussion.
- KAGRA will come back observing run in the next spring with better sensitivity.