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Sources of GWs

New eyes to observe the Universe
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K. Kokeyama JGW-G1808116



Target GW bands for laser interferometry

Currently GWs above 10 Hz can be detected by LIGO and Virgo.
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Next generation GWDs and space GWDs will expand the window of GWs



How can we detect GW signals?

• Initially, it was thought too faint to ever be useful.

→ Predicted amplitude is about 10-21 in 1960s to 1970s.

• In 1960s to 1970s, we changed our mind:
it’s so faint but measurable.

• We need just considering how to measure changes of distance of 10-18 m 
between two objects several kilometers apart.

• Finally, we decided to use a laser interferometer based on Michelson 
interferometer to detect the tiny displacement.

―Reduce any disturbances causing larger than 10-18 m displacement.

―Reduce noises accompanying with sensing the displacement.
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How to reduce disturbances?
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How to reduce disturbances?
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Thermal noise:Brownian motions of atoms

Motion of each atom is much larger than 

our target.

―Enlarge beams on each test mass.

―Use low loss coating and substrate.

―Cooling mirrors.
→ Unique feature in KAGRA and the 

next generation GW detectors.

KAGRA case:

Beam size ~ 7cm

Loss angle ~ 10-8 (substrate) 

Temperature ~ 20K
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How to reduce sensing noise?
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~100 W

Quantum shot noise:

Fluctuation of a number of photons on 

the photodecter.

• GW signals ∝ laser power

• Shot noise ∝ laser power

→ Increasing laser power improves S/N.

~50 W

~50 W
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How to reduce sensing noise?
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~100 W

Insert input test masses for 

increasing the beam on test masses.

~50 kW

~50 kW

Quantum shot noise:

Fluctuation of a number of photons on 

the photodecter.

• GW signals ∝ laser power

• Shot noise ∝ laser power

→ Increasing laser power improves S/N.
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How to reduce sensing noise?
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~100 W

For further reduction of quantum shot 

noise, power-recycling technique is used.

~500 kW

~500 kW

This configuration is used in Virgo 

during O3 and current KAGRA.

Insert input test masses for 

increasing the beam on test masses.

Quantum shot noise:

Fluctuation of a number of photons on 

the photodecter.

• GW signals ∝ laser power

• Shot noise ∝ laser power

→ Increasing laser power improves S/N.
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How to reduce sensing noise?
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This configuration is used in 

current LIGO and Virgo and will 

be in future KAGRA.

Resonant-sideband extraction technique 

is used for making cut-off frequency of 

cavity response to the GW signals.

→ S/N ratio to shot noise increases.

For further reduction of quantum shot 

noise, power-recycling technique is used.

Insert input test masses for 

increasing the beam on test masses.
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Design sensitivity of KAGRA
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Sensing noise
Displacement noise

High and low frequency sensitivity is limited by disturbances 

and sensing noise, respectively



Global network and
multi-messenger astronomy

• 90 confident events in O1-O3.

• One successful follow-up 
observation: GW170817

― GW, short GRB, and afterglow

― Counterpart was identified.

― Standard siren etc.

• Multiple-detector observation is 
essential for:

― better localization

― better duty cycle

• Increase of the number of 
detectors are important.

12

Network duty factor during O3



1st Observing Run (O1)
2015 Sep. – 2016 Jan.

• 2 LIGO detectors
• GW150914:

First detection of BBH merger.

2nd Observing Run (O2)
2016 Nov. – 2017 Aug.

• 2 LIGO and Virgo (in Aug.)
• GW170814:

First detection with 3 detectors.
• GW170817:

First detection of BNS coalescence.
Multi-messenger astronomy

3rd Observing Run (O3):
2019 Apr. – 2020 Mar. (O3a and O3b)

• 2 LIGO and Virgo detectors
• GW200105:

First detection of NS-BH merger.

2020 Apr.  (O3GK)
• KAGRA and GEO600

Past observing run
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Current and Future observing Run
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4th Observing Run (O4)
2023 May. – 2025 Jan.

• 2 LIGO and KAGRA detectors started O4a run.
• KAGRA stopped O4a to improve sensitivity.
• LIGO continues observing run.
• Virgo and KAGRA plan to start the observing 

run from March and spring in 2024, respectively.

5th Observing Run (O5)
• Starting time has not been decided yet.
• Detail term has also not been decided. 

today
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◎
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◎

KAGRA

Cryogenics

Underground



KAGRA: Current detector configuration
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Partially cooled Power Recycling Fabry Perot Michelson Interferometer (PRFPMI)

~1.2 W



Status of previous observing run (O3GK)
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Time (days) from April 7, 2020

Average of 53% Days with
large seismic motion

Progress of Theor. and Exp. Phys. 2022, 063F01 (2022)

Not only sensitivity but also stability improvement is important.



Noise budget during O3GK
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KAGRA Collaboration, 2023, PTEP 2023, 10A101 

Control noise

Scattered

light noise
Shot noise Frequency

noise



Our 3 years after O3GK
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T. Uchiyama



VIS repair and upgrade for low freq.
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Upgrade and repair of mirror suspensions 
until spring in 2022. 



Baffle installation for mid. freq.
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Mid-size baffle installation
until summar in 2022. 



Several achievement on commissioning
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T. Akutsu JGW-G2314966 



Several achievement on commissioning
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T. Akutsu JGW-G2314966 



Sensitivity history during O4 commissioning
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Low frequency:
Control noise reduction

Middle frequency:
Environmental noise reduction
Jitter noise reduction

High frequency:
Frequency noise reduction.
ADC noise reduction. 



Sensitivity when starting O4a
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Target sensitivity of O4b
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We still need an improvement of sensitivity in overall frequency range.



Noise budget of O4a sensitivity
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control noise acoustic noise Shot noise,

PD dark noise, and 

frequency noise

• We have made noise budget of O4a sensitivity.
• It takes two months to make the noise budget, which is much faster 

than that during O3GK.
• We are now starting noise hunting to obtain better sensitivity.

thermal noise
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Commissioning after O4a
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We are now working hard to improve the sensitivity.
What need to do:

― Achieve PRFPMI with DC readout with cooled mirrors.
― More robust and low noise alignment controls for IFO.
― Cooling sapphire mirrors at least below 100 K.
― Reduction of acoustic coupling around OMC.



Current cooling progress
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All test masses except for ETMY was cooled down around 100K.

90 K

90 K 250 K

90 K 250 K

100 K



Mirror cooling
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Mirror cooling was partially progressed 
but frosting problem sometimes occurred.

Frosting happened

Warm up slightly

Keep around 30K

from July 23, 0:0:0 UTC



Cryocooler status
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Some cryocoolers show instability of temperature, which would cause 
serious frosting on the mirror.
→ETMY is now warming up and we are now trying to solve the problem.

Temperature is stable and low

Temperature fluctuates a lot and high

from September 10, 0:0:0 UTC



OMC suspension damper installation 
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New dampers
for vertical motion

New dampers
for horizontal motion



Summary
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• O4 observing run has started since 24 of May with the better 
sensitivity than O3GK.

• KAGRA stopped observing run on 21 of June and restarted 
commissioning for sensitivity improvement.

• We need to further improve the sensitivity for achieving O4b target 
and the strategy on the commissioning is under discussion.

• KAGRA will come back observing run in the next spring with better 
sensitivity.


