GWPPBSM2023@Osaka Metropolitan Univ. Nov 6-9, 2023

Gravitational Wave Constraints on Properties of Exotic Compact Objects

Tatsuya Narikawa (ICRR, Univ. of Tokyo)

Nami Uchikata (ICRR), Takahiro Tanaka (Kyoto Univ.)

<u>arXiv:2106.09193</u>

Phys. Rev. D 104, 084056 (2021)

JGW-G2315375

Exotic compact objects (ECOs)

Alternatives to BH in GR

Motivation: avoid spacetime singularity in BH, and solve information loss problem of BH.

Tidal deformability

Spin-Induced Quadrupole Moment (SIQM)

ECOs have largely different values of Λ and $\delta \kappa$ from those of BHs.

Previous works: focusing on only one of Λ and $\delta \kappa$

Aim of this work: Focusing on both Λ and $\delta \kappa$. Model-independent constraints on deviations from the BBH case by measuring Λ and $\delta \kappa$ via GWs.

We report constraints on Λ and $\delta \kappa$ for six low-mass GWTC-2 events (long-inspiral regime): GW151226, GW170608, GW190707, GW190720, GW190728, GW190924

Tidal deformability

When binary orbital separations are small, each star is tidally distorted by its companion.

Tidal deformability

$$\mathcal{Q}_{ij} = -\lambda \mathcal{E}_{ij}$$

(Tidal-induced) Quadrupole moment

Companion's tidal field

Tidal deformability

1) affects GW phase, 2) characterizes compact objects

Binary tidal deformability

[Flanagan, Hinderer, 2007; Hinderer 2008; Vines, Flanagan, Hinderer 2011]

$$\tilde{\Lambda} = \frac{16}{13} \left[(1 + 11X_2)X_1^4 \Lambda_1 + (1 \leftrightarrow 2) \right]$$

 $\Lambda_{1,2}=\lambda_{1,2}/m_{1,2}^5\ :\ {\rm individual\ ones}$ $X_{1,2}=m_{1,2}/(m_1+m_2)\ :\ {\rm mass\ ratio}$

Tidal deformability for different EOCs

$$\Lambda_{1,2} = \lambda_{1,2} / m_{1,2}^5$$

$\Lambda = 0$: BH in GR

 $Q_{ij} = -\lambda \mathcal{E}_{ij}$

(Schwarzschild BH [Binnington, Poisson, 2009; Damour, Nagar, 2009], Kerr BH [Poisson, 2015; Pani+, 2015; Landry, Poisson, 2015]),

 $\Lambda \sim 100-1000$: Neutron Stars (NSs) [Lattimer, Prakash2004].

($\Lambda < 900 \text{ by } \text{GW170817}$ [LVC 2018, Narikawa+2019])

$\Lambda \neq$ 0: Exotic compact objects (ECOs),

boson stars, gravastars, wormhole, quantum correction to BH For gravastars, $\Lambda < 0.$ [Uchikata, Yoshida, Pani, 2016]

Previous works: focusing on only Λ

Tidal tests: Johnson-McDaniel+, 2020 (Constraints on Boson stars by future observations of binary ECOs)

Spin-induced quadrupole moment (SIQM)

Deformation due to compact object's spin

$$Q = -(1 + \delta \kappa)\chi^2 m^3$$

 $\delta\kappa = 0$: BH [Poisson, 1998],

 $\delta\kappa \sim 2-20$: spinning NS [Laarakkers, 1997; Pappas, 2012],

 $\delta\kappa \sim 10 - 150$: spinning boson stars [Ryan 1997],

For gravastar $\delta \kappa < 0$ is possible [Uchikata+2016].

The leading effect on GW:

symmetric combination of SIQM parameters $\delta \kappa_{1,2}$:

$$\delta \kappa_s = (\delta \kappa_1 + \delta \kappa_2)/2$$

Previous works: focusing on only δκ SIQM tests: ① Krishnendu+, 2019 (GW151226 and GW170608);
② LVK, "O3a Tests of GR" (GWTC-2 events); "O3b Tests of GR" (GWTC-3 events)

Post-Newtonian GW phase

PN phase can efficiently describe the GW emission in the inspiral regime. PN approximation: solve the Einstein eqs. by a series in v/c.

Newton gravity + GR correction: $\mathcal{O}((v/c)^0) + \mathcal{O}((v/c)^2) + \mathcal{O}((v/c)^3) + \cdots$.

(valid for slow motion $v/c \ll 1$ and weak field $GM/Rc^2 \ll 1$. Hereafter, c=G=1.)

 $\Psi_{\text{ECO}}(f) = \Psi_{\text{BBH}}(f) + \Psi_{\text{SIQM}}(f) + \Psi_{\text{Tidal}}(f)$

0-5.5PN 2-3PN 5-7.5PN η : symmetric mass ratio Difficult to measure well $\sim \mathcal{M}^{-5/3} f^{-5/3} \left[1 + a_{1PN}(\eta) x^2 + a_{1.5PN}(\eta, \chi_{eff}) x^3 \right]$ \mathcal{M} : chirp mass Measurable very well

$$+a_{2PN}(\eta, \chi_i^2, \kappa_s)x^4 + \dots + a_{5PN}(\eta, \Lambda)x^{10} + \dots]$$
v: orbital velocity
$$\kappa: \text{spin-induced QM} \text{ $\Lambda: tidal deformability} \text{ Compact objects} \text{ Ω compact objects}$$

Tidal phase evolution for unequal mass binary ECO with (12, 8) Msun

Demonstration of tidal phase evolution for binary ECO

Large phase effects ~15 rad around ISCO frequency for $\Lambda = 500$.

SIQM phase evolution

for unequal mass binary ECO with (12, 8) Msun

Demonstration of SIQM phase evolution for binary ECO

SIQM effect is strongly degenerate with spins.

Our analysis setup - parameter estimation

- Post-Newtonian (PN) inspiral waveform model:

ECO = BBH + Tidal + SIQM $\Lambda \delta \kappa$

- Bayesian inference library: Nested sampling in LALSUITE (LALInferenceNest)

Bayes's theorem
$$p(\theta|d) = \frac{\mathcal{L}(d|\theta)\pi(\theta)}{\mathcal{Z}},$$
 d: data $\theta = \{m1, m2, \Lambda, \delta \kappa, \cdots\}$

Likelihood
$$\mathcal{L}(d|\theta) \propto \exp\left[-\frac{\langle d - h(\theta)|d - h(\theta)\rangle}{2}\right]$$

 $\tilde{h}(f) = \mathscr{A}(f)e^{i\Psi(f)}$

Noise-weighted inner product $\langle a|b\rangle := 4 \operatorname{Re} \int_{f_{\text{low}}}^{f_{\text{high}}} df \frac{\tilde{a}^*(f)\tilde{b}(f)}{S_n(f)},$

Evidence
$$\mathcal{Z} = \int d\theta \mathcal{L}(d|\theta) \pi(\theta)$$
. **Bayes factor** $BF_{BBH}^{ECO} = \frac{\mathcal{Z}_{ECO}}{\mathcal{Z}_{BBH}}$.

- Priors: uniform on $\tilde{\Lambda}$ and $\delta \tilde{\Lambda}$ for tidal, uniform on $\delta \kappa_{1,2}$ for SIQM.

Selected events from GWTC-2 events

Low-mass events (long inspiral): higher cutoff frequency ≥ 120 Hz and larger inspiral SNR ≥ 9

f_{high} denotes the cutoff frequency divide the inspiral and post-inspiral regimes.

Event	f _{high} [Hz]	SNR inspiral	
GW151226	150	10.7	
GW170608	180	14.7	the loudest inspiral SNR
GW190707	160	11.2	First, we present t
GW190720	125	9.3	results for GW170 in detail.
GW190728	160	12.1	
GW190924	175	11.4	

Constraints on Tidal: GW170608

The posterior PDF of $\tilde{\Lambda}$

Consistent with GR ($\tilde{\Lambda} = 0$) at the 90% CL

fhigh=180 Hz

Adding the SIQM terms do not affect the constraint on the tidal deformability $\tilde{\Lambda}$.

The 90% symmetric credible range of $\tilde{\Lambda}$: [-1265, 565]

Constraints on SIQM: GW170608

The posterior PDF of $\delta \kappa_s$

They are weighted by dividing the original prior: uniform on $\delta \kappa_{1,2}$.

Consistent with GR ($\delta \kappa_s = 0$) at the 90% CL

 $\delta \kappa_s$ is poorly constrained for both waveform templates, which is consistent with the results shown in the previous studies by LIGO-Virgo.

Constraints on Tidal: six events

The posterior PDF of $\tilde{\Lambda}$ for six low-mass events.

TF2g_Tidal_SIQM waveform model

All events are consistent with BBH in GR ($\tilde{\Lambda} = 0$), no evidence of deviation from GR

Event	$ ilde{\Lambda}$
GW151226	[-1441, 649]
GW170608	[-1265, 565]
GW190707	[-590, 1661]
GW190720	[-1445, 1768]
GW190728	[-1432, 1078]
GW190924	[-2041, 1118]

90% symmetric intervals

Constraints on Tidal and SIQM: six events

The corner plots of $\tilde{\Lambda}$ - $\delta \kappa_s$ plane for six low-mass events.

TF2g_Tidal_SIQM_waveform model

16 ⁰ − 00 ¹		Event	$\log_{10} BF_{BBH}^{ECO}$
	GW15ff226	GW151220	-0.45
	Gv #90707	- GW170608	-2.08
, 9 ⁰ - ¹ 09,	GW 190720	GW190707	-2.07
∧ ⁶⁰ -	GW190924	GW190720	-1.77
	ך ר	GW190728	-1.98
		GW190924	-2.03
		Combined	-10.38
Allever		The binary ECO	D model (with
BBH in G nd δ_{i}	(]=0)	Tidal and SIQM	1) is disfavored
We find weak negative correl	ation	compared to t	he BBH in GR.
between $\tilde{\Lambda}$ and $\delta \kappa_s$.	16 Sr		

- We analyzed six low-mass GWTC-2 events using the post-Newtonian waveform model.
- The first constraints on $\tilde{\Lambda}$ of events classified as BBH
- We found that all events that we have analyzed are consistent with BBH mergers in GR ($\tilde{\Lambda} = 0$ and $\delta \kappa_s = 0$).
- The binary ECO model (with tidal and SIQM terms) is disfavored compared to the BBH in GR.

Future work

- Results of GWTC-3 events will appear soon.