f^{2} scaling of the PTA signals, induced gravitational waves, and primordial black holes

Takahiro Terada

(Particle Theory and Cosmology group, Center for Theoretical Physics of the Universe, Institute for Basic Science)

Collaborators: Keisuke Harigaya, Keisuke Inomata, and Kazunori Kohri
Based on [Inomata, Kohri, Terada, 2306.17834] and [Harigaya, Inomata, Terada, 2309.00228]

Pulsar Timing Array results

Hellings-Downs Curve

[NANOGrav, 2306.16213]
(c)

(d)

[PPTA, 2306.16215]

[CPTA, 2306.16216]

[EPTA/InPTA, 2306.16214]

Gravitational-Wave Spectrum

$$
\Omega_{\mathrm{GW}}(f)=\frac{2 \pi^{2} f_{*}^{2}}{3 H_{0}^{2}} A_{\mathrm{GWB}}^{2}\left(\frac{f}{f_{*}}\right)^{5-\gamma}
$$

PTA, Induced GW, and PBH

New Physics Interpretations

See also [EPTA/InPTA, 2306.16227], [Bian et al., 2307.02376], [Figueroa, 2307.02399], and [Ellis et al, 2308.08546].

New Physics Interpretations

See also [EPTA/InPTA, 2306.16227], [Bian et al., 2307.02376], [Figueroa, 2307.02399], and [Ellis et al, 2308.08546].

Inflationary GW

New Physics Interpretations

See also [EPTA/InPTA, 2306.16227], [Bian et al., 2307.02376], [Figueroa, 2307.02399], and [Ellis et al, 2308.08546].

Inflationary GW

Scalar-Induced Gravitational Waves

What are they?
Gravitational waves induced by (primordial) curvature perturbations via (derivative) interactions in General Relativity.

(In the absence of anisotropic stress, $\Phi=\Psi$.)
Equation of motion $\quad h_{\mathbf{k}}^{\prime \prime}(\eta)+2 \mathscr{H} h_{\mathbf{k}}^{\prime}(\eta)+k^{2} h_{\mathbf{k}}(\eta)=4 S_{\mathbf{k}}(\eta)$
where $\mathscr{H}=a H$ is the conformal Hubble, and the source term is

$$
S_{\mathbf{k}}=\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3 / 2}} e_{i j}(\mathbf{k}) q_{i} q_{j}\left(2 \Phi_{\mathbf{q}} \Phi_{\mathbf{k}-\mathbf{q}}+\frac{4}{3(1+w)}\left(\mathscr{H}^{-1} \Phi_{\mathbf{q}}^{\prime}+\Phi_{\mathbf{q}}\right)\left(\mathscr{H}^{-1} \Phi_{\mathbf{k}-\mathbf{q}}^{\prime}+\Phi_{\mathbf{k}-\mathbf{q}}\right)\right)
$$

Why important?

- They give us some information on small-scale cosmological perturbations and the underlying inflation model.
- They give us some hints on the equation of state and reheating dynamics of the early Universe. See, e.g., [Domènech, 1912.05583], [nomata, Kohri, Nakama, Terada, 1904.12878; 1904.12879]
- There is also a strong connection to the primordial-black-hole scenario.
- They can fit the nHz SGWB found by PTAs!
[Saito, Yokoyama, 0812.4339; 0912.5317]

Scalar-Induced Gravitational Waves

What are they?
Gravitational waves induced by (primordial) curvature perturbations via (derivative) interactions in General Relativity.

(In the absence of anisotropic stress, $\Phi=\Psi$.)
Equation of motion $\quad h_{\mathbf{k}}^{\prime \prime}(\eta)+2 \mathscr{H} h_{\mathbf{k}}^{\prime}(\eta)+k^{2} h_{\mathbf{k}}(\eta)=4 S_{\mathbf{k}}(\eta)$
where $\mathscr{H}=a H$ is the conformal Hubble, and the source term is

$$
S_{\mathbf{k}}=\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3 / 2}} e_{i j}(\mathbf{k}) q_{i} q_{j}\left(2 \Phi_{\mathbf{q}} \Phi_{\mathbf{k}-\mathbf{q}}+\frac{4}{3(1+w)}\left(\mathscr{H}^{-1} \Phi_{\mathbf{q}}^{\prime}+\Phi_{\mathbf{q}}\right)\left(\mathscr{H}^{-1} \Phi_{\mathbf{k}-\mathbf{q}}^{\prime}+\Phi_{\mathbf{k}-\mathbf{q}}\right)\right)
$$

Why important?

- They give us some information on small-scale cosmological perturbations and the underlying inflation model.
- They give us some hints on the equation of state and reheating dynamics of the early Universe. See, e.9., [Domènech, 1912.05583], [Inomata, Kohri, Nakama, Terada, 1904.12878; 1904.12879]
- There is also a strong connection to the primordial-black-hole scenario.
- They can fit the nHz SGWB found by PTAs!

Relation to Primordial Black Holes

Horizon re-entry of rare enhanced perturbations

Previous studies

After NANOGrav-12.5 [Vaskonen, Veermäe, 2009.07832]

After June 29

(including works related not to induced GWs but to PBHs)
[De Luca, Franciolini, Riotto, 2009.08268] [Kohri, Terada, 2009.11853]
[Zhou, Jiang, Cai, Sasaki, Pi, 2010.03537] [Domènech, Pi, 2010.03976] [Inomata, Kawasaki, Mukaida, Yanagida, 2011.01270 [Dandoy, Domcke, Rompineve, 2302.07901]

PBH larger than the Jeans radius
~ Hubble radius

Saito, Yokoyama, 0812.4339; 0912.5317]
[Bugaev, Klimai, 0908.0664]
Chen, Yuan, Huang, 1910.12239]
[Guo, Khlopov, Liu, Wu, Wu, Zhu, 2306.17022] [Franciolini, lovino, Vaskonen, Veermäe, 2306.17149] Cai, He, Ma, Yan, Yuan, 2306.17822 [Depta, Schmidt-Hoberg, Tasillo, 2306.17836] [Inomata, Kohri, Terada, 2306.17834] [Gouttenoire Vitagliano, 2306.17841$]$ [Huang, Cai, Jiang, Zhang, Piao, 2306.17577] [Wang, Zhao, Li, Zhu, 2307.00572]
[Liu, Chen, Huang, 2307.01102]
[Gouttenoire, Trifinopoulos, Valogiannis, Vanvlasselaer, 2307.01457] [Jhurani, Gunhal, 2307.02677]
[Unal, Papageorgiou, Obata, 2307.02322]
[Figueroa, Pieroni, Ricciardone, Simakachorn, 2307.02399]
[Zhu, Zhao, Wang, 2307.03095]
[Firouzjahi, Talebian, 2307.03164]
f^{2} spectrum from Induced-GW

IR tail of the induced GWs

$$
\begin{array}{r}
\Omega_{\mathrm{GW}}^{\mathrm{ind}}(f)=\Omega_{\mathrm{r}}\left(\frac{g_{*}(f)}{g_{*}^{0}}\right)\left(\frac{g_{*, s}^{0}}{g_{*, s}(f)}\right)^{4 / 3} \bar{\Omega}_{\mathrm{GW}}^{\mathrm{ind}}(f) \quad \bar{\Omega}_{\mathrm{GW}}^{\mathrm{ind}}(f)=\int_{0}^{\infty} \mathrm{d} v \int_{|1-v|}^{1+v} \mathrm{~d} u \mathcal{K}(u, v) \mathcal{P}_{\mathcal{R}}(u k) \mathcal{P}_{\mathcal{R}}(v k) \\
\mathcal{K}(u, v)=\frac{3\left(4 v^{2}-\left(1+v^{2}-u^{2}\right)^{2}\right)^{2}\left(u^{2}+v^{2}-3\right)^{4}}{1024 u^{8} v^{8}}\left[\left(\ln \left|\frac{3-(u+v)^{2}}{3-(u-v)^{2}}\right|-\frac{4 u v}{u^{2}+v^{2}-3}\right)^{2}+\pi^{2} \Theta(u+v-\sqrt{3})\right] \begin{array}{c}
\text { [Espinosa, Racco, Riotto, 1804.27732] } \\
\text { [Kohri, Terada, 1804.08577] }
\end{array}
\end{array}
$$

[Cai, Pi, Sasaki, 1909.13728]
[Yuan, Chen, Huang, 1910.09099]
[Domènech, Pi, Sasaki, 2005.12314]

Explaining $\Omega_{\mathrm{GW}} \propto f^{2}$ Scaling

Possibility 1

Possibility 2

[Harigaya, Inomata, Terada, 2309.00228]

Possibility 3

Explaining $\Omega_{\mathrm{GW}} \propto f^{2}$ Scaling

Possibility 1

Possibility 2

[Harigaya, Inomata, Terada, 2309.00228]
The peak is
on a smaller scale than the PTA range.
\rightarrow SUB-solar mass PBHs
Possibility 3

Explaining $\Omega_{\mathrm{GW}} \propto f^{2}$ Scaling

Possibility 1

Possibility 2

[Harigaya, Inomata, Terada, 2309.00228]
The peak is
on a smaller scale
than the PTA range.
\rightarrow SUB-solar mass PBHs
Possibility 3

Implications for Primordial Black Holes

[Inomata, Kohri, Terada, 2306.17834]
See also [Franciolini et al., 2306.17149]

$M / M_{\odot}=1.2 \times 10^{-4}, 1.6 \times 10^{-4}$, and 2.2×10^{-4} from top to bottom.
The sensitivity curves were taken from [Schmitz, 2002.04615].

Explaining $\Omega_{\mathrm{GW}} \propto f^{2}$ Scaling

Possibility 1

Possibility 2

[Harigaya, Inomata, Terada, 2309.00228]

Possibility 3

Explaining $\Omega_{\mathrm{GW}} \propto f^{2}$ Scaling

Possibility 1

f^{2} Spectrum in the Kination Scenario

- Growth factor for superhorizon modes from growing subhorizon density perturbations

$$
w:=\frac{P}{\rho}=1 \quad \rho \propto a^{-6}
$$

The source term decreasing slower than the Hubble scale

$$
\text { an additional factor of }\left(\frac{a(k)}{a_{\text {fixed }}}\right)^{4} \sim f^{-2}
$$

- Relative redshift factor for subhorizon modes during kination

$$
\text { an additional factor of }\left(\frac{a_{\mathrm{fixed}}}{a(k)}\right)^{2} \sim f
$$

During an era with $w=1$,

$$
2 \pi f=k=\mathscr{H} \propto a^{-2}
$$

$$
a \propto \eta^{1 / 2}
$$

η : conformal time
\mathscr{H} : conformal Hubble parameter

Multiplying the above factors to the standard one $\left(f^{3}\right)$, we obtain $f^{3} \cdot f^{-2} \cdot f=f^{2}$.

More generally, it nontrivially depends on the equation-of-state parameter w :

$$
\Omega_{\mathrm{GW}}(f) \sim f^{3-2(1-3 w) /(1+3 w)}
$$

Induced GW scenario with kination

$$
w:=\frac{P}{\rho}=1 \quad \rho \propto a^{-6}
$$

The PBH abundance is exponentially suppressed compared to the standard scenario.

$$
f_{\mathrm{PBH}} \equiv \frac{\rho_{\mathrm{PBH}}}{\rho_{\mathrm{DM}}} \sim \exp \left(-\frac{\delta_{\mathrm{c}}^{2}}{2 \mathscr{P}_{\zeta}(k(M))}\right)
$$

1. Smaller curvature perturbation is required to fit the PTA data. This is because the GW fraction is enhanced during kination.

$$
\Omega_{\mathrm{GW}} \propto a^{2}
$$

2. It will be harder for a PBH to form during kination.

$$
\delta_{\mathrm{c}} \approx 0.4-0.75
$$

[^0]Example GW spectrum

PBH abundance

The PTA data can be fit without PBH overproduction.

Summary and Conclusion

The PTA data may be indicating $\Omega_{\mathrm{GW}} \propto f^{2}$ spectrum, which can be interpreted in terms of (the IR tail of) the scalar-induced GWs.

[Harigaya, Inomata, Terada, 2309.00228]

- Fitting the PTA data well.
- No PBH overproduction.

[Inomata, Kohri, Terada, 2306.17834]
- Fitting the PTA data well.
- Associated with $\mathcal{O}\left(10^{-4}\right) M_{\odot}$ PBHs.
- Their binary mergers lead to additional GW signals.
- Small parameter region explaining microlensing data too.

Appendix

Astrophysical Interpretation
 Supermassive Black Hole Binary Mergers

The simplest model doesn't work well.

- Circular orbit
- Energy loss only due to GW emission

Interactions with the environment are important.

Universal Infrared f^{3} scaling

[Cai, Pi, Sasaki, 1909.13728]
[Hook, Marques-Tavares, Racco, 2010.03568]

- Finite duration of GW generation on subhorizon scales

Central Limit Theorem

$$
\mathscr{P}_{h}\left(k_{L}\right) \propto \frac{1}{N_{\text {patch }}}=\left(\frac{k_{L}}{k_{S}}\right)^{3}
$$

- Radiation-dominated era

$$
\Omega_{\mathrm{GW}}(f) \propto f^{3}
$$

f^{2} Spectrum from a sharp peak

An analysis for the lognormal curvature perturbations in [Pi, Sasaki, 2005.12306] is useful.

$$
\mathscr{P}_{\zeta}=\frac{A_{\zeta}}{\sqrt{2 \pi} \Delta} \exp \left(-\frac{\ln ^{2}\left(k / k_{*}\right)}{2 \Delta^{2}}\right)
$$

- For a narrow peak: $\Delta \ll 1$

The range of the f^{2} part is controlled by Δ.

- For a broad peak: $\Delta \gg 1$

$$
\text { No } f^{2} \text { tail. } \quad \Omega_{\mathrm{GW}} \text { has a lognormal peak with a width } \Delta / \sqrt{2} \text {. }
$$

Our Recipe for a PBH

We have basically followed the recipe in the NANOGrav-15 paper [Afzal et al. (NANOGrav), 2306.16219], which is relatively simple.

- Carr's formula (a.k.a. the Press-Schechter formalism)

- Critical density $\delta_{c}=0.45$
- The ratio between the PBH mass and the horizon mass $\gamma=0.2$
- The relativistic degrees of freedom $g_{*}=g_{*, s}=80$
- The Gaussian window function $W(k)=\exp \left(-k^{2} / 2\right)$
- Including the transfer function of the density perturbations
- The nonlinear relation between the curvature and density perturbations has been neglected.
- We have not adopted the effects of the critical collapse.

Studies by other groups

The effects of non-Gaussianity were studied in

```
[Franciolini, lovino, Vaskonen, Veermäe, 2306.17149]
[Wang, Zhao, Li, Zhu, 2307.00572]
[Liu, Chen, Huang, 2307.01102]
```

The effects of softening w and/or c_{s} were studied in
[De Luca, Franciolini, Riotto, 2009.08268]
See also [Franciolini, Racco, Rompineve, 2306.17136], [Abe, Tada, 2307.01653]

PBH overproduction was reported (except from Wang et al.).

GWs from Binary PBH Mergers

Binary formation in the radiation era

$$
\begin{aligned}
& \Omega_{\mathrm{GW}}^{\text {merger }}(f)=\frac{f}{3 H_{0}^{2}} \int_{0}^{\frac{f_{\text {cut }}}{f}-1} \mathrm{~d} z \frac{R(z)}{(1+z) H(z)} \frac{\mathrm{d} E_{\mathrm{GW}}}{\mathrm{~d} f_{\mathrm{s}}} \\
& \frac{\mathrm{~d} E}{\mathrm{~d} f_{\mathrm{s}}}=\frac{(G \pi)^{2 / 3} M_{c}^{5 / 3}}{3} \begin{cases}f_{\mathrm{s}}^{-1 / 3} & \text { for } f_{\mathrm{s}}<f_{1} \\
w_{1} f_{\mathrm{s}}^{2 / 3} & \text { for } f_{1} \leq f_{\mathrm{s}}<f_{2} \\
w_{2} \frac{\sigma^{4} f_{\mathrm{s}}^{2}}{\left(\sigma^{2}+4\left(f_{\mathrm{s}}-f_{2}\right)^{2}\right)^{2}} & \text { for } f_{2} \leq f_{\mathrm{s}} \leq f_{3} \\
0 & \text { for } f_{\mathrm{s}}>f_{3}\end{cases} \\
& \text { [Aith et al., 0710.2335] [Ajith et al., 0909.2867] } \\
& \text { total mass } \quad M_{t}=m_{1}+m_{2} \\
& \text { chirp mass } \quad M_{c}^{5 / 3}=m_{1} m_{2}\left(m_{1}+m_{2}\right)^{-1 / 3} \\
& \text { source-frame frequency } \quad f_{\mathrm{s}}=(1+z) f
\end{aligned}
$$

[Nakamura, Sasaki, Tanaka, Thorne, 1997]
Sasaki, Suyama, Tanaka, Yokoyama, 1603.08338]

GWs from Binary PBH Mergers

Binary formation in the radiation era

[Nakamura, Sasaki, Tanaka, Thorne, 1997]
[Sasaki, Suyama, Tanaka, Yokoyama, 1603.08338]

GWs from Binary PBH Mergers

Binary Black Holes loose energy by emitting Gravitational Waves.

[Nakamura, Sasaki, Tanaka, Thorne, 1997]
[Sasaki, Suyama, Tanaka, Yokoyama, 1603.08338]

[^0]: See, e.g., [Escrivà et al., 2007.05564] and references therein.

