f^2 scaling of the PTA signals, induced gravitational waves, and primordial black holes

Takahiro Terada

(Particle Theory and Cosmology group, Center for Theoretical Physics of the Universe, Institute for Basic Science)

Collaborators: Keisuke Harigaya, Keisuke Inomata, and Kazunori Kohri Based on [Inomata, Kohri, Terada, 2306.17834] and [Harigaya, Inomata, Terada, 2309.00228]

Gravitational Wave Probes of Physics Beyond Standard Model, Media Center, Osaka Metropolitan University, Nov. 9, 2023

Pulsar Timing Array results

Hellings-Downs Curve

[NANOGrav, 2306.16213]

(c) 0.8 0.6 0.4 $\Gamma(\xi_{ab})$ 0.2 0.0 -0.2 $\gamma = 13/3$ -0.4 90 120 60 150 180 30 Separation Angle Between Pulsars, ξ_{ab} [degrees] (d)

Gravitational-Wave Spectrum

$$\Omega_{\rm GW}(f) = \frac{2\pi^2 f_*^2}{3H_0^2} A_{\rm GWB}^2 \left(\frac{f}{f_*}\right)^{5-\gamma}$$

 $5 - \gamma = 1.8 \pm 0.6$ (90% credible region)

[NANOGrav, 2306.16213]

PTA, Induced GW, and PBH

New Physics Interpretations

See also [EPTA/InPTA, 2306.16227], [Bian et al., 2307.02376], [Figueroa, 2307.02399], and [Ellis et al, 2308.08546].

[NANOGrav, 2306.16219]

New Physics Interpretations

See also [EPTA/InPTA, 2306.16227], [Bian et al., 2307.02376], [Figueroa, 2307.02399], and [Ellis et al, 2308.08546].

[NANOGrav, 2306.16219]

New Physics Interpretations

See also [EPTA/InPTA, 2306.16227], [Bian et al., 2307.02376], [Figueroa, 2307.02399], and [Ellis et al, 2308.08546].

[NANOGrav, 2306.16219]

Scalar-Induced Gravitational Waves

What are they?

Gravitational waves induced by (primordial) curvature perturbations via (derivative) interactions in General Relativity.

$$ds^{2} = -a^{2}(1+2\Phi)d\eta^{2} + a^{2}\left((1-2\Psi)\delta_{ij} + \frac{1}{2}h_{ij}\right)dx^{i}dx^{j}$$

Gravitational potential Curvature perturbations GW (tensor mode)

(In the absence of anisotropic stress, $\Phi = \Psi$.)

$$h_{\mathbf{k}}''(\eta) + 2\mathcal{H}h_{\mathbf{k}}'(\eta) + k^2h_{\mathbf{k}}(\eta) =$$

where $\mathcal{H} = aH$ is the conformal Hubble, and the source term is $S_{\mathbf{k}} = \left[\frac{\mathrm{d}^{3}q}{(2\pi)^{3/2}}e_{ij}(\mathbf{k})q_{i}q_{j}\left(2\Phi_{\mathbf{q}}\Phi_{\mathbf{k}-\mathbf{q}} + \frac{4}{3(1+w)}(\mathscr{H}^{-1}\Phi_{\mathbf{q}}' + \Phi_{\mathbf{q}})(\mathscr{H}^{-1}\Phi_{\mathbf{k}-\mathbf{q}}' + \Phi_{\mathbf{k}-\mathbf{q}})\right)\right]$

Why important?

- They give us some information on small-scale cosmological perturbations and the underlying inflation model.
- They give us some hints on the equation of state and reheating dynamics See, e.g., [Domènech, 1912.05583], [Inomata, Kohri, Nakama, Terada, 1904.12878; 1904.12879]. of the early Universe.
- There is also a strong connection to the primordial-black-hole scenario.
- They can fit the nHz SGWB found by PTAs!

[Ananda, Clarkson, Wands, gr-qc/0612013], [Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290] For reviews, see [Yuan, Huang, 2103.04739], [Domènech, 2109.01398].

$$=4S_{\mathbf{k}}(\eta)$$

f [Hz] $10^{-16}10^{-14}10^{-12}10^{-10}10^{-8}10^{-6}10^{-4}10^{-2}10^{0}10^{2}10^{4}$ CMB BBN EPTA AR 10^{-2} LISA, 10^{-4} aLIGO y-distortion µ-distortion P (design) SKA 10^{-6} DECIGO **BBO** 10⁻⁸ CMB & LSS 10^{-10} [Saito, Yokoyama, 0812.4339; 0912.5317] $10^7 \ 10^9 \ 10^{11} \ 10^{13} \ 10^{15} \ 10^{17} \ 10^{19}$ 10^{-1} 10^{3} 10^{1} 10^{5}

k [Mpc⁻¹] [Inomata, Nakama, 1812.00674]

Scalar-Induced Gravitational Waves

What are they?

Gravitational waves induced by (primordial) curvature perturbations via (derivative) interactions in General Relativity.

$$ds^{2} = -a^{2}(1+2\Phi)d\eta^{2} + a^{2}\left((1-2\Psi)\delta_{ij} + \frac{1}{2}h_{ij}\right)dx^{i}dx^{j}$$

Gravitational potential Curvature perturbations GW (tensor mode)

(In the absence of anisotropic stress, $\Phi = \Psi$.)

$$h_{\mathbf{k}}''(\eta) + 2\mathcal{H}h_{\mathbf{k}}'(\eta) + k^2h_{\mathbf{k}}(\eta) =$$

where $\mathcal{H} = aH$ is the conformal Hubble, and the source term is $S_{\mathbf{k}} = \int \frac{\mathrm{d}^3 q}{(2\pi)^{3/2}} e_{ij}(\mathbf{k}) q_i q_j \left(2\Phi_{\mathbf{q}} \Phi_{\mathbf{k}-\mathbf{q}} + \frac{4}{3(1+w)} (\mathcal{H}^{-1})^{3/2} + \frac{4}{3(1+w)} \right)$

Why important?

- They give us some information on small-scale cosmological perturbations and the underlying inflation model.
- They give us some hints on the equation of state and reheating dynamics of the early Universe. See, e.g., [Domènech, 1912.05583], [Inomata, Kohri, Nakama, Terada, 1904.12878; 1904.12879].
- There is also a strong connection to the primordial-black-hole scenario.
- They can fit the nHz SGWB found by PTAs!

[Ananda, Clarkson, Wands, gr-qc/0612013], [Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290] For reviews, see [Yuan, Huang, 2103.04739], [Domènech, 2109.01398].

$$=4S_{\mathbf{k}}(\eta)$$

$$\mathcal{P}^{-1}\Phi_{\mathbf{q}}' + \Phi_{\mathbf{q}})(\mathcal{H}^{-1}\Phi_{\mathbf{k}-\mathbf{q}}' + \Phi_{\mathbf{k}-\mathbf{q}})$$

[Saito, Yokoyama, 0812.4339; 0912.5317]

Relation to Primordial Black Holes

IR tail of the induced GWs

$$\Omega_{\rm GW}^{\rm ind}\left(f\right) = \Omega_{\rm r}\left(\frac{g_{*}\left(f\right)}{g_{*}^{0}}\right) \left(\frac{g_{*,s}^{0}}{g_{*,s}\left(f\right)}\right)^{4/3} \bar{\Omega}_{\rm GW}^{\rm ind}\left(f\right)$$

$$\mathcal{K}(u,v) = \frac{3\left(4v^2 - (1+v^2 - u^2)^2\right)^2 \left(u^2 + v^2 - \frac{3}{1024}u^8v^8\right)}{1024u^8v^8}$$

$$\bar{\Omega}_{\rm GW}^{\rm ind}\left(f\right) = \int_{0}^{\infty} \mathrm{d}v \int_{|1-v|}^{1+v} \mathrm{d}u \,\mathcal{K}\left(u,v\right) \mathcal{P}_{\mathcal{R}}\left(uk\right) \mathcal{P}_{\mathcal{R}}\left(vk\right)$$

 $\frac{-3)^4}{2} \left[\left(\ln \left| \frac{3 - (u+v)^2}{3 - (u-v)^2} \right| - \frac{4uv}{u^2 + v^2 - 3} \right)^2 + \pi^2 \Theta(u+v-\sqrt{3}) \right]$ [Espinosa, Racco, Riotto, 1804.27732] [Kohri, Terada, 1804.08577]

[Cai, Pi, Sasaki, 1909.13728] [Yuan, Chen, Huang, 1910.09099] [Domènech, Pi, Sasaki, 2005.12314]

[Inomata, Kohri, Terada, 2306.17834]

[Harigaya, Inomata, Terada, 2309.00228]

Implications for Primordial Black Holes

The HLV O3 constraint is from [Abbott et al. (LIGO-Virgo-KAGRA), 2101.12130].

[Inomata, Kohri, Terada, 2306.17834]

[Harigaya, Inomata, Terada, 2309.00228]

f^2 Spectrum in the Kination Scenario

• Growth factor for superhorizon modes from growing subhorizon density perturbations The source term decreasing slower than the Hubble scale

an additional factor of
$$\left(\frac{a(k)}{a_{\text{fixed}}}\right)^4 \sim f^{-2}$$

• Relative redshift factor for subhorizon modes during kination

an additional factor of
$$\left(\frac{a_{\text{fixed}}}{a(k)}\right)^2 \sim f$$

Multiplying the above factors to the standard one (f^3) , we obtain $f^3 \cdot f^{-2} \cdot f = f^2$.

More generally, it nontrivially depends on the equation-of-state parameter w:

$$\Omega_{\rm GW}(f) \sim$$

for the IR tail part of the spectrum.

 $w := \frac{P}{-} = 1 \quad \rho \propto a^{-6}$

During an era with w = 1,

$$2\pi f = k = \mathscr{H} \propto a^{-2},$$

 $a \propto \eta^{1/2}$,

 η : conformal time

 \mathcal{H} : conformal Hubble parameter

 $\sim f^{3-2(1-3w)/(1+3w)}$

[Domènech, Pi, Sasaki, 2005.12314]

The PBH abundance is exponentially suppressed compared to the standard scenario.

$$f_{\rm PBH} \equiv \frac{\rho_{\rm PBH}}{\rho_{\rm DM}} \sim \exp\left(-\frac{\delta_{\rm c}^2}{2\mathscr{P}_{\zeta}(k(M))}\right)$$

1. Smaller curvature perturbation is required to fit the PTA data. This is because the GW fraction is enhanced during kination.

$$\Omega_{\rm GW} \propto a^2$$

2. It will be harder for a PBH to form during kination.

$$\delta_{\rm c} \approx 0.4 - 0.75$$

See, e.g., [Escrivà et al., 2007.05564] and references therein.

Induced GW scenario with kination $w := \frac{P}{\rho} = 1 \quad \rho \propto a^{-6}$

The PTA data can be fit without PBH overproduction.

[Harigaya, Inomata, Terada, 2309.00228]

See also [Balaji et al., 2307.08552] for a similar scenario.

Summary and Conclusion

The PTA data may be indicating $\Omega_{GW} \propto f^2$ spectrum, which can be interpreted in terms of (the IR tail of) the scalar-induced GWs.

[Harigaya, Inomata, Terada, 2309.00228]

- Fitting the PTA data well.
- No PBH overproduction.

- Fitting the PTA data well.
- Associated with $\mathcal{O}(10^{-4}) M_{\odot}$ PBHs.
 - Their binary mergers lead to additional GW signals.
 - Small parameter region explaining microlensing data too.

Astrophysical Interpretation Supermassive Black Hole Binary Mergers

The simplest model doesn't work well.

- Circular orbit
- Energy loss only due to GW emission

Interactions with the environment are important.

Universal Infrared f^3 scaling

[Cai, Pi, Sasaki, 1909.13728] [Hook, Marques-Tavares, Racco, 2010.03568]

Finite duration of GW generation on subhorizon scales

Central Limit Theorem

$$\mathcal{P}_h(k_L) \propto \frac{1}{N_{\text{patch}}} = \left(\frac{k_L}{k_S}\right)^3$$

Radiation-dominated era

no further redshift factors

 $\Omega_{\rm GW}(f) \propto f^3$

An analysis for the lognormal curvature perturbations in [Pi, Sasaki, 2005.12306] is useful.

• For a narrow peak: $\Delta \ll 1$

The range of the f^2 part is controlled by Δ .

• For a broad peak: $\Delta \gg 1$

No f^2 tail. Ω_{GW} has a lognormal peak with a width $\Delta/\sqrt{2}$.

f^2 Spectrum from a sharp peak

$$-\exp\left(-\frac{\ln^2(k/k_*)}{2\Delta^2}\right)$$

 $f_{\rm p} = (2/\sqrt{3}) \times 2\pi k_*$ $f_{\rm b} \approx \sqrt{3}\Delta f_{\rm p}$

Our Recipe for a PBH (in [Inomata, Kohri, Terada, 2306.17834])

We have basically followed the recipe in the NANOGrav-15 paper [Afzal et al. (NANOGrav), 2306.16219], which is relatively simple.

- Carr's formula (a.k.a. the Press-Schechter formalism)
- Critical density $\delta_c = 0.45$
- The ratio between the PBH mass and the horizon mass $\gamma = 0.2$
- The relativistic degrees of freedom $g_* = g_{*,s} = 80$
- The Gaussian window function $W(k) = \exp(-k^2/2)$
- Including the transfer function of the density perturbations
- The nonlinear relation between the curvature and density perturbations has been neglected.
- We have not adopted the effects of the critical collapse.

Studies by other groups

The effects of non-Gaussianity were studied in

[Franciolini, Iovino, Vaskonen, Veermäe, 2306.17149] [Wang, Zhao, Li, Zhu, 2307.00572] [Liu, Chen, Huang, 2307.01102]

PBH overproduction was reported (except from Wang et al.).

The effects of softening w and/or c_s were studied in

[De Luca, Franciolini, Riotto, 2009.08268] See also [Franciolini, Racco, Rompineve, 2306.17136], [Abe, Tada, 2307.01653]

GWs from Binary PBH Mergers

Binary formation in the radiation era

[Nakamura, Sasaki, Tanaka, Thorne, 1997] [Sasaki, Suyama, Tanaka, Yokoyama, 1603.08338]

$$R(z) = \left(\frac{f_{\text{FBH}}\Omega_{\text{CDM}}\rho_{c}}{M}\right) \frac{dP_{t}}{dt}$$

$$R(z) = \left(\frac{f_{\text{FBH}}\Omega_{\text{CDM}}\rho_{c}}{M}\right) \frac{dP_{t}}{dt}$$

$$I_{0} = (3/170) \left\{\bar{x}^{4} I \left[(GM)^{3}(4\pi f_{\text{FBH}}/3)^{3}\right]\right\}$$

$$\frac{dP_{t}}{dt} = \begin{cases} \frac{3}{58} \left[-\left(\frac{t}{t_{0}}\right)^{\frac{3}{5}} + \left(\frac{t}{t_{0}}\right)^{\frac{3}{2}}\right] \frac{1}{t} & \text{for } t < t_{c} \\ \frac{3}{58} \left(\frac{t}{t_{0}}\right)^{\frac{3}{5}} \left[-1 + \left(\frac{t}{t_{0}}\right)^{-\frac{59}{5}} + \left(\frac{4\pi}{3}f_{\text{FBH}}\right)^{-\frac{59}{5}}\right] \frac{1}{t} & \text{for } t < t_{c} \\ \frac{3}{58} \left(\frac{t}{t_{0}}\right)^{\frac{3}{5}} \left[-1 + \left(\frac{t}{t_{0}}\right)^{-\frac{59}{5}} + \left(\frac{4\pi}{3}f_{\text{FBH}}\right)^{-\frac{59}{5}}\right] \frac{1}{t} & \text{for } t \ge t_{c}, \end{cases}$$

$$\Omega_{\text{GW}}^{\text{merger}}(f) = \frac{f}{3H_{0}^{2}} \int_{0}^{\frac{f_{\text{cut}}}{f} - 1} dz \frac{R(z)}{(1 + z)H(z)} \frac{dE_{\text{GW}}}{df_{\text{s}}}$$

$$R(z) = \left(\frac{G\pi}{3}\right)^{2/3} \frac{M_{c}^{5/3}}{3} \left\{ \int_{s}^{s-1/3} & \text{for } f_{\text{s}} < f_{1} \\ \frac{dE}{df_{\text{s}}} = \frac{(G\pi)^{2/3} M_{c}^{5/3}}{3} \begin{cases} f_{\text{s}}^{-1/3} & \text{for } f_{\text{s}} < f_{1} \\ w_{1}f_{\text{s}}^{2/3} & \text{for } f_{1} \le f_{\text{s}} < f_{2} \\ w_{2}\frac{\sigma^{4}f_{s}^{2}}{(c^{2} + 4(f_{s} - f_{2})^{2})^{2}} \end{cases} \text{ for } f_{2} \le f_{8} \le f_{3} \\ \text{ohrp mass} \quad M_{c}^{5/3} = m_{1}m_{2}(m_{1} + m_{2})^{-1/3} \\ \text{source-frame frequency} \quad f_{\text{s}} = (1 + z)f \end{cases}$$

GWs from Binary PBH Mergers

Binary formation in the radiation era

[Nakamura, Sasaki, Tanaka, Thorne, 1997] [Sasaki, Suyama, Tanaka, Yokoyama, 1603.08338]

$$R(z) = \left(\frac{f_{\text{FBH}}\Omega_{\text{CDM}}\rho_{c}}{M}\right) \frac{dP_{t}}{dt}$$

$$R(z) = \left(\frac{f_{\text{FBH}}\Omega_{\text{CDM}}\rho_{c}}{M}\right) \frac{dP_{t}}{dt}$$

$$I_{0} = (3/170) \left\{\bar{x}^{4} I \left[(GM)^{3}(4\pi f_{\text{FBH}}/3)^{3}\right]\right\}$$

$$\frac{dP_{t}}{dt} = \begin{cases} \frac{3}{58} \left[-\left(\frac{t}{t_{0}}\right)^{\frac{3}{5}} + \left(\frac{t}{t_{0}}\right)^{\frac{3}{2}}\right] \frac{1}{t} & \text{for } t < t_{c} \\ \frac{3}{58} \left(\frac{t}{t_{0}}\right)^{\frac{3}{5}} \left[-1 + \left(\frac{t}{t_{0}}\right)^{-\frac{59}{5}} + \left(\frac{4\pi}{3}f_{\text{FBH}}\right)^{-\frac{59}{5}}\right] \frac{1}{t} & \text{for } t < t_{c} \\ \frac{3}{58} \left(\frac{t}{t_{0}}\right)^{\frac{3}{5}} \left[-1 + \left(\frac{t}{t_{0}}\right)^{-\frac{59}{5}} + \left(\frac{4\pi}{3}f_{\text{FBH}}\right)^{-\frac{59}{5}}\right] \frac{1}{t} & \text{for } t \ge t_{c}, \end{cases}$$

$$\Omega_{\text{GW}}^{\text{merger}}(f) = \frac{f}{3H_{0}^{2}} \int_{0}^{\frac{f_{\text{cut}}}{f} - 1} dz \frac{R(z)}{(1 + z)H(z)} \frac{dE_{\text{GW}}}{df_{\text{s}}}$$

$$R(z) = \left(\frac{G\pi}{3}\right)^{2/3} \frac{M_{c}^{5/3}}{3} \left\{ \int_{s}^{s-1/3} & \text{for } f_{\text{s}} < f_{1} \\ \frac{dE}{df_{\text{s}}} = \frac{(G\pi)^{2/3} M_{c}^{5/3}}{3} \begin{cases} f_{\text{s}}^{-1/3} & \text{for } f_{\text{s}} < f_{1} \\ w_{1}f_{\text{s}}^{2/3} & \text{for } f_{1} \le f_{\text{s}} < f_{2} \\ w_{2}\frac{\sigma^{4}f_{s}^{2}}{(c^{2} + 4(f_{s} - f_{2})^{2})^{2}} \end{cases} \text{ for } f_{2} \le f_{8} \le f_{3} \\ \text{ohrp mass} \quad M_{c}^{5/3} = m_{1}m_{2}(m_{1} + m_{2})^{-1/3} \\ \text{source-frame frequency} \quad f_{\text{s}} = (1 + z)f \end{cases}$$

GWs from Binary PBH Mergers

Binary formation in the radiation era

Binary Black Holes loose energy by emitting Gravitational Waves.

[Nakamura, Sasaki, Tanaka, Thorne, 1997] [Sasaki, Suyama, Tanaka, Yokoyama, 1603.08338]

$$R(z) = \left(\frac{f_{\text{FBH}}\Omega_{\text{CDM}}\rho_{c}}{M}\right) \frac{dP_{t}}{dt}$$

$$R(z) = \left(\frac{f_{\text{FBH}}\Omega_{\text{CDM}}\rho_{c}}{M}\right) \frac{dP_{t}}{dt}$$

$$I_{0} = (3/170) \left\{\bar{x}^{4} I \left[(GM)^{3}(4\pi f_{\text{FBH}}/3)^{3}\right]\right\}$$

$$\frac{dP_{t}}{dt} = \begin{cases} \frac{3}{58} \left[-\left(\frac{t}{t_{0}}\right)^{\frac{3}{5}} + \left(\frac{t}{t_{0}}\right)^{\frac{3}{2}}\right] \frac{1}{t} & \text{for } t < t_{c} \\ \frac{3}{58} \left(\frac{t}{t_{0}}\right)^{\frac{3}{5}} \left[-1 + \left(\frac{t}{t_{0}}\right)^{-\frac{59}{5}} + \left(\frac{4\pi}{3}f_{\text{FBH}}\right)^{-\frac{59}{5}}\right] \frac{1}{t} & \text{for } t < t_{c} \\ \frac{3}{58} \left(\frac{t}{t_{0}}\right)^{\frac{3}{5}} \left[-1 + \left(\frac{t}{t_{0}}\right)^{-\frac{59}{5}} + \left(\frac{4\pi}{3}f_{\text{FBH}}\right)^{-\frac{59}{5}}\right] \frac{1}{t} & \text{for } t \ge t_{c}, \end{cases}$$

$$\Omega_{\text{GW}}^{\text{merger}}(f) = \frac{f}{3H_{0}^{2}} \int_{0}^{\frac{f_{\text{cut}}}{f} - 1} dz \frac{R(z)}{(1 + z)H(z)} \frac{dE_{\text{GW}}}{df_{\text{s}}}$$

$$R(z) = \left(\frac{G\pi}{3}\right)^{2/3} \frac{M_{c}^{5/3}}{3} \left\{ \int_{s}^{s-1/3} & \text{for } f_{\text{s}} < f_{1} \\ \frac{dE}{df_{\text{s}}} = \frac{(G\pi)^{2/3} M_{c}^{5/3}}{3} \begin{cases} f_{\text{s}}^{-1/3} & \text{for } f_{\text{s}} < f_{1} \\ w_{1}f_{\text{s}}^{2/3} & \text{for } f_{1} \le f_{\text{s}} < f_{2} \\ w_{2}\frac{\sigma^{4}f_{s}^{2}}{(c^{2} + 4(f_{s} - f_{2})^{2})^{2}} \end{cases} \text{ for } f_{2} \le f_{8} \le f_{3} \\ \text{ohrp mass} \quad M_{c}^{5/3} = m_{1}m_{2}(m_{1} + m_{2})^{-1/3} \\ \text{source-frame frequency} \quad f_{\text{s}} = (1 + z)f \end{cases}$$

