23/11/2020@素粒子現象論研究会2020

強いCP問題

QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g_s^2} \text{tr}(G_{\mu\nu})^2 + \frac{i\theta}{8\pi^2} \text{tr}(G_{\mu\nu}\tilde{G}^{\mu\nu}) + \mathcal{L}_{\text{matter}}$$

- θ-termはnon-zeroの中性子EDMを導く
- •しかし、中性子EDMは実験で厳しく制限

[C. A. Baker et al. '06]
$$d_n | < 2.9 \times 10^{-26} \, e \, {\rm cm}$$

[P. G. Harris et al. '99]

 $0 \le \theta \le 2\pi$ のパラメータ θ の値がなぜそんなに小さい?

 $|\theta| \lesssim 10^{-10}$

[Peccei-Quinn '77]

- Peccei-Quinn(PQ)対称性と呼ばれるanomalous U(1)対称 性を導入
- $U(1)_{PQ}$ のSSB → NGボソン(axion)

• 模型での実現

KSVZ model

[Kim '79, Shifman-Vainshtein-Zakhrov, '80]

Extra heavy quark + singlet PQ scalar

DFSZ model

[Zhitnitsky, '80, Dine-Fischler-Srednicki, '83]

Two Higgs doublets + singlet PQ scalar

String Reconnection

• String – string *O* dynamics

Scaling behavior

 $ho_{
m string}$ $\sim \text{const.}$

Y-(Shaped) Junction

[Betterncourt-Kibble '94, Betterncourt-Laguna-Matzner '96]

String – string 𝒯 dynamics

Superconducting String

[Witten, '80]

- String内部でU(1)_{EM}が破れる → superconducting string
- EM current が 散逸なく string 上を 流れる
- String上のEM currentがstring間に 磁場の引力相互作用を導く

→ Y-junctionの形成

• Cf. アノマリーインフローによる superconducting string

[Jakiw-Rossi, '81, Callan-Harvey, '85, Ganoulis-Lazarides, '89, Lazarides-Shafi, '85, Kim, '86, Lazarides et al, '88, Iwasaki, '97, Fukuda et al, '20]

メッセージ

 DFSZ modelにおけるaxion stringは、従来の予想よりも 複雑で興味深い構造を持っている。

→ Electroweak axion string

EW axion stringはsuperconducting stringになりえて、非常に大きなcurrentを運ぶことでY-junctionを形成する可能性がある

→ DFSZ modelではreconnectionが機能しない?

Model

DFSZ Model

• Particle contents

Two Higgs doublet model + SM singlet scalar

[Zhitnitsky '80 ,Dine-Fischler-Srednicki '81]					
let scalar		H_1	H_2	S	
	$SU(2)_W$	2	2	1	
	$U(1)_Y$	1	1	0	
	$U(1)_{\rm PQ}$	X_1	X_2	X_s	

• Scalar potential

$$V(H,S) = V_H + V_S + V_{mix}$$

$$V_H = m_{11}^2 |H_1|^2 + m_{22}^2 |H_2|^2 + \frac{\beta_1}{2} |H_1|^4 + \frac{\beta_2}{2} |H_2|^4$$

$$+ \beta_3 |H_1|^2 |H_2|^2 + \beta_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1)$$

$$V_S = -m_S^2 |S|^2 + \lambda_S |S|^4$$

$$V_{mix} = (\kappa S^2 H_1^{\dagger} H_2 + \text{h.c.}) + \kappa_{1S} |S|^2 |H_1|^2 + \kappa_{2S} |S|^2 |H_2|^2$$

Charge relation

$$2X_S - X_1 + X_2 = 0$$

PQ Charge

• 擬スカラー場の質量行列

$$\kappa \left(\begin{array}{ccc} -\frac{v_2 v_s^2}{v_1} & v_s^2 & 2v_2 v_s \\ v_s^2 & -\frac{v_1 v_s^2}{v_2} & -2v_1 v_s \\ 2v_2 v_s & -2v_1 v_s & -4v_1 v_2 \end{array} \right)$$

• U(1)_{PQ} currentがZ-bosonと結合しないようにPQ 変換 を次で定義:

$$H_1 \mapsto e^{2i\alpha \sin^2\beta} H_1, \quad H_2 \mapsto e^{-2i\alpha \cos^2\beta} H_2, \quad S \mapsto e^{i\alpha} S$$

• PQ charge

$$\begin{array}{ccc} H_1 & H_2 & S \\ 2\sin^2\beta & -2\cos^2\beta & 1 \end{array}$$

Electroweak Axion String

Strings

Characterized by NGB form Higgs boson

Characterized by axion (NGB)

Strings

Characterized by NGB form Higgs boson

Characterized by axion (NGB)

Strings

Electroweak Axion String

Electroweak Axion String

Electroweak flux tube (Frankfurt)

Frankfurt

Axion "cloud" (Delicious smell)

Axion string core (Stick)

Axion String in DFSZ Model

Electroweak Axion Strings

- 電弱対称性も破れる
- 2つのHiggs doubletもnon-zero VEVを獲得

Axion string

Electroweak axion string

Higgsのwinding patternに応じて、三種類のEW axion stringが出てくる → Type-A, B, C

Superconducting string

Electroweak Axion Strings

Type-A EW Axion String

• Type-A EW axion string は次で特徴づけられる

$$S \sim v_s e^{i\theta}$$

$$H_1 \sim e^{i\theta} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}$$

$$V_{\text{mix}} \supset \kappa S^2 H_1^{\dagger} H_2 + \text{h.c.}$$

$$H_1 \sim e^{-i\theta} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$$

Type-A EW Axion String

• Type-A EW axion string は次で特徴づけられる

NB: $U(1)_Z$ のwindingは一価性のために必要

Type-A EW Axion String

• Non-zero Z-boson fieldが存在する

$$g_Z \equiv \sqrt{g^2 + g'^2}$$

$$S \sim v_{s}e^{i\theta}$$

$$H_{1} \sim e^{2i\theta \sin^{2}\beta}e^{-i\theta\sigma_{3}\cos 2\beta} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix}$$

$$H_{2} \sim e^{-2i\theta \cos^{2}\beta}e^{-i\theta\sigma_{3}\cos 2\beta} \begin{pmatrix} 0 \\ v_{2} \end{pmatrix}$$

$$Z_{\theta} \sim \frac{-2\cos 2\beta}{g_{Z}}$$

Type-B EW Axion String

• Type-A EW axion stringは次で特徴づけられる $S \sim v_s e^{i heta}$

$$H_{1} \sim e^{2i\theta} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix} = e^{2i\theta \sin^{2}\beta} e^{-2i\theta\sigma_{3}\cos^{2}\beta} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix}$$
$$H_{2} \sim \begin{pmatrix} 0 \\ v_{2} \end{pmatrix} = e^{-2i\theta \cos^{2}\beta} e^{-2i\theta\sigma_{3}\cos^{2}\beta} \begin{pmatrix} 0 \\ v_{2} \end{pmatrix}$$
$$U(1)_{PQ} \text{ winding } U(1)_{Z} \text{ winding }$$

• Z-boson and Z-flux

$$Z_{\theta} \sim \frac{-4\cos^2\beta}{g_Z}$$

$$\Phi_Z = \frac{-8\pi\cos^2\beta}{g_Z}$$

Type-B EW Axion String

• Type-B EW axion string \mathcal{O} profile

Type-C EW Axion String

- Type-C EW axion stringの配位
- $S \sim v_s e^{i\theta}$

$$H_{1} \sim \frac{v_{1}}{2} \begin{pmatrix} e^{2i\theta} - 1 \\ e^{2i\theta} + 1 \end{pmatrix} = \underline{e^{2i\theta \sin^{2}\beta} e^{-i\theta \cos 2\beta\sigma_{Z}} e^{i\theta\sigma_{1}}} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix}$$

$$H_{2} \sim \frac{v_{2}}{2} \begin{pmatrix} 1 - e^{-2i\theta} \\ 1 + e^{-2i\theta} \end{pmatrix} = \underline{e^{-2i\theta \cos^{2}\beta} e^{-i\theta \cos 2\beta\sigma_{Z}} e^{i\theta\sigma_{1}}} \begin{pmatrix} 0 \\ v_{2} \end{pmatrix}$$

$$U(1)_{PQ} \text{ winding } U(1)_{Z} \quad U(1)_{W^{1}} \text{ winding }$$
• Z-flux and W-flux winding winding $U(1)_{W^{1}} = U(1)_{W^{1}} = U$

Type-C EW Axion String

• String内部では、場の配位は"smeared ansatz"で記述 される:

$$H_{1} = \frac{1}{2}v_{1}e^{i\theta} \begin{pmatrix} f(r)e^{2i\theta} - h(r) \\ f(r)e^{2i\theta} + h(r) \end{pmatrix}, \quad H_{2} = \frac{1}{2}v_{2} \begin{pmatrix} h(r) - f(r)e^{-2i\theta} \\ h(r) + f(r)e^{-2i\theta} \end{pmatrix}$$

• Current carrier: Higgs \mathcal{O} charged components \mathcal{E} W-boson

String Tension

•3種類のEW axion stringsのtensionを比較

- Type-C stringが最も安定になりうる
 →パラメータ空間によってはfavored
- EW phase transitionの後、axion stringがtype-C stringになる

Superconductivity

Type-C Stringに流れるSupercurrent

• EW axion stringに沿って流れるcurrentをどのように評価するか?

Type-C String DSupercurrent

[YA-Hamada-Yoshioka '20]

• (z, t) dependent zero mode $\eta(z, t)$ を考える $\tilde{S}, \tilde{H}_i, \tilde{W}_\mu, \tilde{Y}_\mu$ はtype-C backgroundsを表す

$$S = \tilde{S}$$

$$\begin{split} H_i &= \exp\left[i\hat{Q}_{\rm EM}\eta(z,t)\xi(r)\right]\tilde{H}_i\\ W_\mu &= \tilde{W}_\mu - \frac{\eta(z,t)}{g}D_\mu(\xi(r)n)\\ Y_\mu &= \tilde{Y}_\mu + \frac{\eta(z,t)}{g'}\partial_\mu\xi(r) \end{split} \qquad n^a \equiv \frac{H^{\dagger}\sigma_a H_1}{H_1^{\dagger}H_1} = \frac{H_2^{\dagger}\sigma_a H_2}{H_2^{\dagger}H_2} \end{split}$$

• EOMs

$$(D_{\nu}W^{\nu\mu})^{a} = -j_{W}^{\mu,a}, \quad \partial_{\nu}Y^{\nu\mu} = -j_{Y}^{\mu}, \quad D_{\mu}D^{\mu}H_{i} = -\frac{\delta V}{\delta H_{i}^{\dagger}}$$

Type-C Stringに流れるSupercurrent

- Linearized EOM at large r $(\partial_z^2 - \partial_t^2)\eta(z,t) = 0, \quad \xi(r) \sim \log r$ $\eta(z,t)$ is massless excitation along the string
- Static solution $\rightarrow \eta(z,t) = \omega z$ with a constant ω
- EM field strength and electric current

$$F_{rz}^{\rm EM} \sim -\frac{\omega}{er}, \quad J_{\rm EM} \equiv -2\pi r F_{rz}^{\rm EM} \sim \frac{2\pi\omega}{e}$$

Type-C StringにおけるCurrentの最大値

• Zero mode η はHiggs場に "mass" term を供給:

$$\mathcal{L} \supset -(\omega\xi)^2 \frac{v^2}{2} (f-h)^2$$

- U(1)_{EM}が回復して superconducting stateが壊れる (current quenching)
- Currentの最大値は、この寄与がHiggs potentialの negative mass termsとバランスするところ

$$m_1^2 \sim C_1 v^2 + C_2 v_s^2$$

非常に大きなcurrentが流れうる

$$J_{\rm max} \sim v_s$$

String間の相互作用

• String間にかかる、currentが誘導する力:

まとめ

• EW phase transitionのあと、DFSZ axion stringは electroweak gauge fluxをまとった配位になる

→ Electroweak axion string ~ フランクフルト

- Type-C EW axion stringはU(1)_{EM}を破ることで、bosonic carrierを伴うsuperconducting stringになりうる
- String上にJ_{max} ~ v_s程度のcurrentを流す可能性がある
- Currentが誘導する引力によって、DFSZ modelにおけるaxion stringはY-junctionを形成する可能性がある

Backup

Superconducting String

• Axion stringは内部にfermion zero modesを持っている

[Lazarides-Shafi '85, Lazarides-Panagiotakopoulos-Sfafi '88, Ganolis-Lazarides '89, Iwazaki '97]

$$\mathcal{L} \supset -y\phi\overline{\Psi_0}\Psi_0, \quad \phi(x) \sim v_\phi e^{i heta}$$
 [Witten '8 Jackiw-Ro Callan-Ha

• zero modeがEM currentを運ぶ

ossi '81, arvey '85]

 \rightarrow superconducting string [Witten '85] $\partial_{\mu}J^{\mu} = \frac{e^2}{16}E_z$

• currentの最大値

$$J_{\rm max} \sim M_{\rm fermion}$$

Phenomenology, cosmology see

Fukuda-Manohar-Murayama-Telem arXiv:2010.02763 [hep-ph] 38

Higgs Bi-linear Formalism

[Grzadkowki-Maniastis-Wudka, '11]

• Higgs matrixを導入:

$$H = (i\sigma_2 H_1^*, H_2)$$

Covariant derivative

$$D_{\mu}H = \partial_{\mu}H - i\frac{g}{2}\sigma_{a}W_{\mu}^{a}H + i\frac{g'}{2}H\sigma_{3}Y_{\mu}$$

• Higgs potential

$$V_H = -m_1^2 \operatorname{tr} |H|^2 - m_2^2 \operatorname{tr} (|H|^2 \sigma_3) + \alpha_1 \operatorname{tr} |H|^4 + \alpha_2 (\operatorname{tr} |H|^2)^2 + \alpha_3 \operatorname{tr} (|H|^2 \sigma_3 |H|^2 \sigma_3) + \alpha_4 \operatorname{tr} (|H|^2 \sigma_3 |H|^2)$$

Higgs Bi-linear Formalism [Grzadkowki-Maniastis-Wudka, '11]

Scalar potential

$$V_{H} = -m_{1}^{2} \text{tr}|H|^{2} - m_{2}^{2} \text{tr}(|H|^{2}\sigma_{3}) + \alpha_{1} \text{tr}|H|^{4} + \alpha_{2}(\text{tr}|H|^{2})^{2} + \alpha_{3} \text{tr}(|H|^{2}\sigma_{3}|H|^{2}\sigma_{3}) + \alpha_{4} \text{tr}(|H|^{2}\sigma_{3}|H|^{2}),$$

$$V_{\text{mix}} = (\kappa S^{2} \det H + \text{h.c.}) + \frac{1}{2}(\kappa_{1S} + \kappa_{2S})|S|^{2} \text{tr}|H|^{2} + \frac{1}{2}(\kappa_{1S} - \kappa_{2S})|S|^{2} \text{tr}(|H|^{2}\sigma_{3})$$

• Parameter relations

$$m_{11}^2 = m_1^2 + m_2^2, \quad m_{22}^2 = m_1^2 - m_2^2,$$

$$\beta_1 = 2(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4), \quad \beta_2 = 2(\alpha_1 + \alpha_2 + \alpha_3 - \alpha_4),$$

$$\beta_3 = 2(\alpha_1 + \alpha_2 - \alpha_3), \quad \beta_3 = 2(\alpha_3 - \alpha_1)$$

U(1)_{EM}群

[Eto-Hamada-Nitta, '20]

• Unbroken U(1)_{EM} を次で定義する

$$\hat{Q}H \equiv -n^a \frac{\sigma_a}{2}H - H\frac{\sigma_3}{2}$$

where
$$n^a \equiv \frac{\sum_{i=1,2} |H_i|^2 n_i^a}{C}$$
 $n_1^a \equiv \frac{H_{1a}^{\dagger} H_1}{|H_1|^2}, \ n_2^a \equiv \frac{H_2^{\dagger} \sigma_a H_2}{|H_2|^2}$

Positive normalization factor C defined to satisfy $n^a n^a = 1$

• $SU(2)_W \times U(1)_Y$ のsubgroupの $U(1)_Z$ は次で定義

$$\hat{T}_Z H \equiv -^a \frac{\sigma_a}{2} H - \sin^2 \theta_W \hat{Q} H$$

• NB: *H l*tHiggs matrix.

....

U(1)_{EM}群

[Eto-Hamada-Nitta, '20]

• Z-bosonとphoton

$$\begin{cases} Z_{\mu} \equiv -n^{a} W_{\mu}^{a} \cos \theta_{W} - Y_{\mu} \sin \theta_{W} \\ A_{\mu} \equiv -n^{a} W_{\mu}^{a} \sin \theta_{W} + Y_{\mu} \cos \theta_{W} \end{cases}$$

• \hat{Q} のHiggs doubletに対する作用

$$\hat{Q}H_i = \left(-n^a \frac{\sigma_a}{2} + \frac{1}{2}\mathbf{1}\right)H_i,$$
$$\hat{T}_Z H_i = \left(-n^a \frac{\sigma_a}{2} - \sin^2 \theta_W \hat{Q}\right)H_i$$

EOMs of Type-A String

$$f''(r) + \frac{f'(r)}{r} - \frac{f(r)}{r^2}$$

- $\left(2\alpha_{123}v^2f(r)^2 + 2\alpha_2v^2h(r)^2 + \kappa_{1S}v_s^2\phi(r)^2 - m_1^2\right)f(r) - \kappa v_s^2h(r)\phi(r)^2 = 0,$
$$h''(r) + \frac{h'(r)}{r} - \frac{h(r)}{r^2}$$

- $\left(2\alpha_{123}v^2h(r)^2 + 2\alpha_2v^2f(r)^2 + \kappa_{1S}v_s^2\phi(r)^2 - m_1^2\right)h(r) - \kappa v_s^2f(r)\phi(r)^2 = 0,$
$$\phi''(r) + \frac{\phi'(r)}{r} - \frac{\phi(r)}{r^2}$$

- $\left(2\lambda_S v_s^2\phi(r)^2 + 2\kappa_{1S}v^2(f(r)^2 + h(r)^2) + 2\kappa v^2f(r)h(r) - m_s^2\right)\phi(r) = 0.$

• Boundary conditions

$$f(0) = h(0) = \phi(0) = 0$$
 $f(\infty) = h(\infty) = \phi(\infty) = 1$

EOMs of Type-B String

$$\begin{aligned} f''(r) &+ \frac{f'(r)}{r} - \frac{(1+z(r))^2}{r^2} f(r) \\ &- \left(2\alpha_{123} v^2 f(r)^2 + 2\alpha_2 v^2 h(r)^2 + \kappa_{1S} v_s^2 \phi(r)^2 - m_1^2 \right) f(r) - \kappa v_s^2 h(r) \phi(r)^2 = 0, \\ h''(r) &+ \frac{h'(r)}{r} - \frac{(-1+z(r))^2}{r^2} h(r) \\ &- \left(2\alpha_{123} v^2 h(r)^2 + 2\alpha_2 v^2 f(r)^2 + \kappa_{1S} v_s^2 \phi(r)^2 - m_1^2 \right) h(r) - \kappa v_s^2 f(r) \phi(r)^2 = 0, \\ \phi''(r) &+ \frac{\phi'(r)}{r} - \frac{\phi(r)}{r^2} \\ &- \left(2\lambda_S v_s^2 \phi(r)^2 + \kappa_{1S} v^2 (f(r)^2 + h(r)^2) + 2\kappa v^2 f(r) h(r) - m_s^2 \right) \phi(r) = 0, \\ z''(r) &- \frac{z'(r)}{r} - \frac{g_Z^2 v^2}{2} f(r)^2 (1+z(r)) - \frac{g_Z^2 v^2}{2} h(r)^2 (-1+z(r)) = 0. \end{aligned}$$

• Boundary conditions

$$f(0) = \phi(0) = 0, \ \partial_r h|_{r=0} = 0, \ z(0) = 0$$
$$f(\infty) = h(\infty) = \phi(\infty) = z(\infty) = 1$$

EOMs of Type-C String

$$\begin{aligned} f''(r) &+ \frac{f'(r)}{r} - \frac{(1+w(r))^2}{r^2} f(r) \\ &- \left(2(\alpha_1 + \alpha_2)v^2 f(r)^2 + 2(\alpha_2 + \alpha_3)v^2 h(r)^2 + \kappa_{1S} v_s^2 \phi(r)^2 - m_1^2 \right) f(r) - \kappa v_s^2 h(r) \phi(r)^2 = 0, \\ h''(r) &+ \frac{h'(r)}{r} - \frac{(-1+w(r))^2}{r^2} h(r) \\ &- \left(2(\alpha_1 + \alpha_2)v^2 h(r)^2 + 2(\alpha_2 + \alpha_3)v^2 f(r)^2 + \kappa_{1S} v_s^2 \phi(r)^2 - m_1^2 \right) h(r) - \kappa v_s^2 f(r) \phi(r)^2 = 0, \\ \phi''(r) &+ \frac{\phi'(r)}{r} - \frac{\phi(r)}{r^2} \\ &- \left(2\lambda_S v_s^2 \phi(r)^2 + \kappa_{1S} v^2 (f(r)^2 + h(r)^2) + 2\kappa v^2 f(r) h(r) \right) \phi(r) = 0, \\ w''(r) &- \frac{w'(r)}{r} - \frac{g^2 v^2}{2} f(r)^2 (1+w(r)) - \frac{g^2 v^2}{2} h(r)^2 (-1+w(r)) = 0. \end{aligned}$$

• Boundary conditions

$$f(0) = \phi(0) = 0, \ \partial_r h|_{r=0} = 0, \ w(0) = z(0) = 0$$
$$f(\infty) = h(\infty) = \phi(\infty) = w(\infty) = z(\infty) = 1$$

45

Profile of Strings

Profile of Strings

Profile of Strings

String Tension

Parameters $v_s = 10v_1, \ m_h^2 = (125 \text{ GeV})^2, \ \tan \beta = 1, \quad \alpha_3 = \frac{1}{8}(\beta_1 + \beta_2 - 2\beta_3)$ $\kappa_{1S} = \kappa_{2S}, \ \kappa = -2(v/v_s)^2, \ \lambda_S = 1$

Length unit: $v_1 = 0.2$

Supercurrent of Type-C String

• EOMs $\partial^{\alpha}\eta \left(\tilde{D}_{j}\tilde{D}^{j}\chi\right)^{a} = \frac{-g^{2}}{2}\partial^{\alpha}\eta \left(\chi^{a}\mathrm{Tr}|\tilde{H}|^{2} + \xi\mathrm{Tr}\left[\tilde{H}^{\dagger}\sigma_{a}\tilde{H}\sigma_{3}\right]\right),$ $\partial^{\alpha}\eta\partial_{j}\partial^{j}\xi = \frac{-g'^{2}}{2}\partial^{\alpha}\eta \left(\xi\mathrm{Tr}|\tilde{H}|^{2} + 2\mathrm{Tr}\left[\tilde{H}^{\dagger}\chi\tilde{H}\sigma_{3}\right]\right),$ $\tilde{D}^{j}\chi \ \partial^{\alpha}\partial_{\alpha}\eta = 0,$ $\partial^{j}\xi \ \partial^{\alpha}\partial_{\alpha}\eta = 0,$ $\partial^{\alpha}\partial_{\alpha}\eta(2\chi\tilde{H} + \xi\tilde{H}\sigma_{3}) = 0.$

- Linearized EOM for η $\partial^\alpha\partial_\alpha\eta=(\partial_t^2-\partial_z^2)\eta=0$
- Zero mode solutions:

$$\eta(z,t) = \eta^{\pm}(z\pm t)$$

Supercurrent of Type-C String

Static zero mode solution

 $\eta(z) = \omega z$ • $r \rightarrow \infty \tilde{U}(1)_{\text{EM}}$ が回復しbackgroundは次を満たす

$$\tilde{H}\sigma_3 + n^a \sigma_a \tilde{H} = 0, \quad n^a = -\frac{\operatorname{tr}(\sigma_3 \tilde{H}^{\dagger} \sigma_a \tilde{H})}{\operatorname{tr}|\tilde{H}|^2}, \quad \left(\tilde{D}_{\mu} n\right)^a = 0, \quad \operatorname{tr}|\tilde{H}|^2 = 2v^2$$

• EOMsから次の方程式が得られる

$$\left(\tilde{D}_j\tilde{D}^j\chi\right)^a = -g^2v^2(\chi^a - n^a\xi), \quad \partial_j\partial^j\xi = -g'^2v^2(\xi - \chi^a n^a)$$

• Long-range force $\rightarrow \chi^a - n^a \xi = 0$

$$\frac{1}{r}\partial_r(r\partial_r\xi) = 0$$

51

Current Quenching

Stringの内部 r → 0では f とhは次のようなmass terms
 をLagrangianの中で感じる:

$$-\mathcal{L} \supset \frac{4v^2}{r^2} f^2 + 2m_{11}^2 v^2 (f^2 + h^2) + \omega^2 \frac{v^2}{2} (f - h)^2$$
$$= v^2 \begin{pmatrix} f & h \end{pmatrix} \begin{pmatrix} \frac{4}{r^2} + 2m_{11}^2 + \frac{\omega^2}{2} & -\frac{\omega^2}{2} \\ -\frac{\omega^2}{2} & 2m_{11}^2 + \frac{\omega^2}{2} \end{pmatrix} \begin{pmatrix} f \\ h \end{pmatrix}$$

• Determinant of the mass matrix:

$$\det M^2 = (2m_{11}^2)^2 + \frac{4v^2}{r^2} \left(2m_{11}^2 + \frac{\omega^2}{2}\right) + \omega^2 m_{11}^2$$

• Quenchingを避ける \Rightarrow 3 region where det $M^2 < 0$

$$|\omega| \lesssim |m_{11}| \sim v_s$$