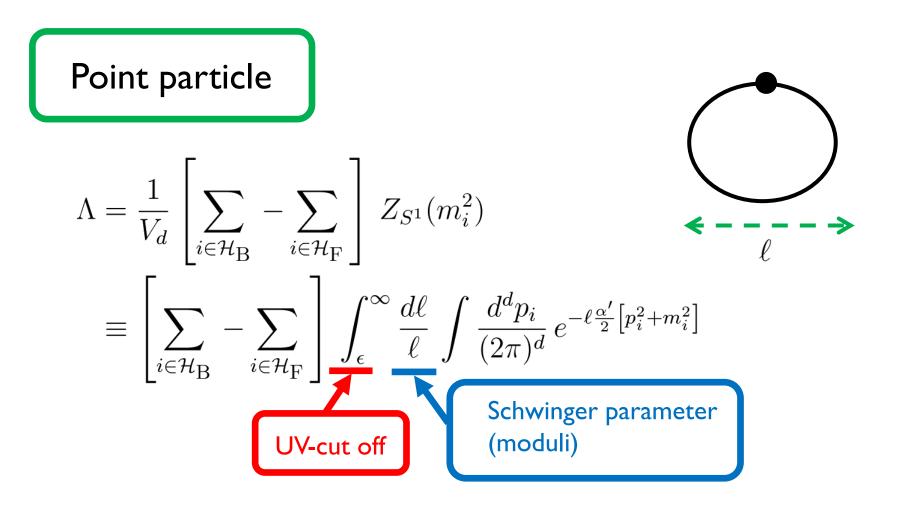
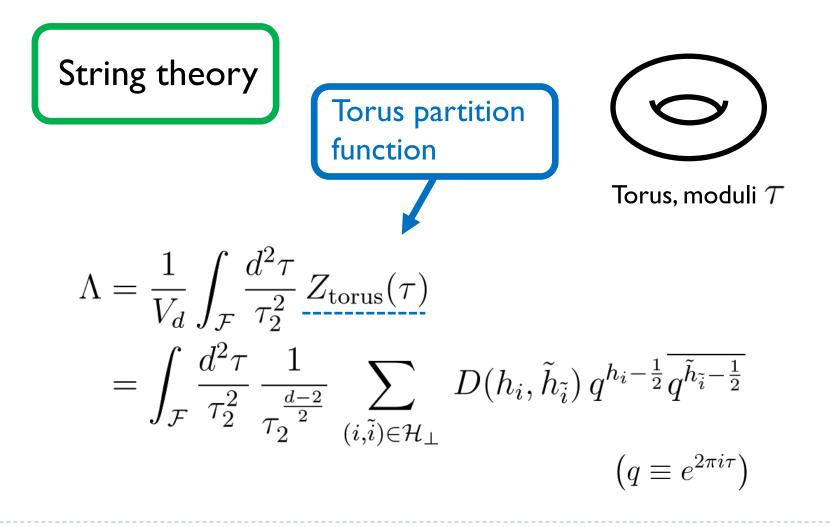
超弦理論と宇宙定数問題

2020年11月28日 大阪市立大学 「素粒子現象論研究会2020」

立命館大学 菅原祐二

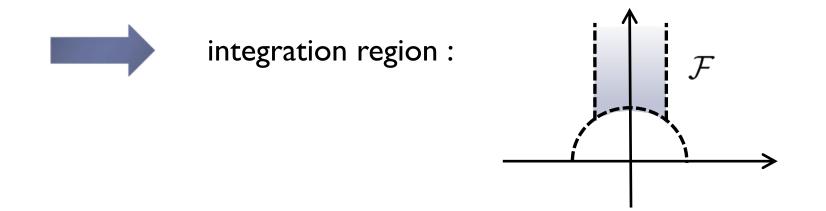
Contents


• Introduction : Cosmological Constant in Superstring


- Asymmetric Orbifolds as Non-SUSY String Vacua with Vanishing CC
- Non-SUSY Vacua with Vanishing CC : Part 2

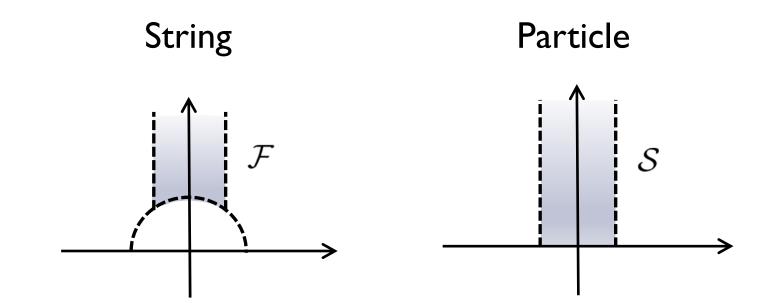
Introduction : Cosmological Constant in Superstring

Cosmological const. = vacuum energy density


$$\Lambda_{1\text{-loop}} \sim \sum [1\text{-loop vacuum diagram}]$$
no interaction

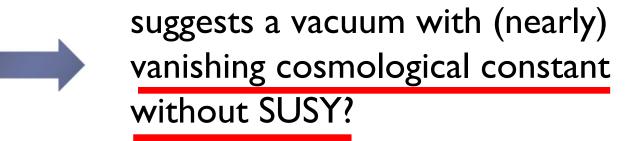
Modular invariance

$$Z_{\text{torus}}\left(-\frac{1}{\tau}\right) = Z_{\text{torus}}(\tau), \quad Z_{\text{torus}}(\tau+1) = Z_{\text{torus}}(\tau)$$



*CC for string is formally identified as that of a particle theory with an infinite number of mass spectrum:

$$\begin{pmatrix} \tau = \frac{\theta + i\ell}{2\pi}, & \frac{\alpha'}{4}m_i^2 = h_i - \frac{1}{2} = \tilde{h}_{\tilde{i}} - \frac{1}{2} \end{pmatrix}$$


$$\Lambda = \int_0^\infty \frac{d\ell}{\ell} \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} (2\pi\alpha'\ell)^{-\frac{d}{2}} \\ \times \sum_{i,\tilde{i}} D(h_i, \tilde{h}_{\tilde{i}}) \exp\left[-\left(h_i + \tilde{h}_{\tilde{i}} - 1\right)\ell + i\theta\left(h_i - \tilde{h}_{\tilde{i}}\right)\right] \\ \propto \int_{\mathcal{S}} \frac{d^2\tau}{\tau_2^2} \frac{1}{\tau_2^{\frac{d-2}{2}}} \sum_{i,\tilde{i}} D(h_i, \tilde{h}_{\tilde{i}}) q^{h_i - \frac{1}{2}} \overline{q^{\tilde{h}_{\tilde{i}} - \frac{1}{2}}},$$
But, the integration region is different.

Integration region of moduli (Schwinger parameter)

'cosmological constant problem'

$\Lambda_{\rm observation} \ll M_{\rm SUSY\ breaking}^4$

Non-SUSY with $\Lambda = 0$?

Two possibilities

(1) $Z(\tau)\equiv 0$, but no supercharges exist.

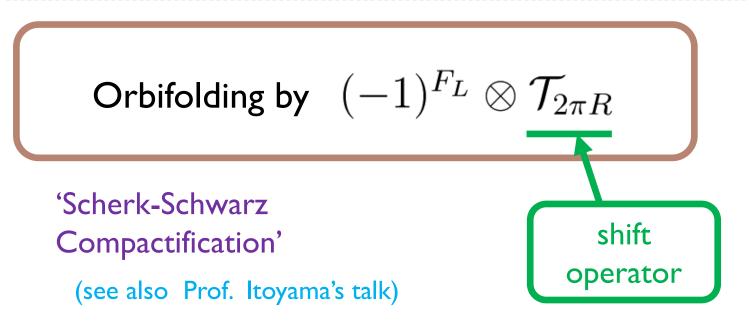

(2) $Z(au) ot\equiv 0$, but $\Lambda = 0$

Asymmetric Orbifolds as Non-SUSY String Vacua with Vanishing Cosmological Constant

How to break SUSY?

Orbifolding by
$$\,(-1)^{F_L}$$

$$F_L$$
 : left-moving space-time fermion number

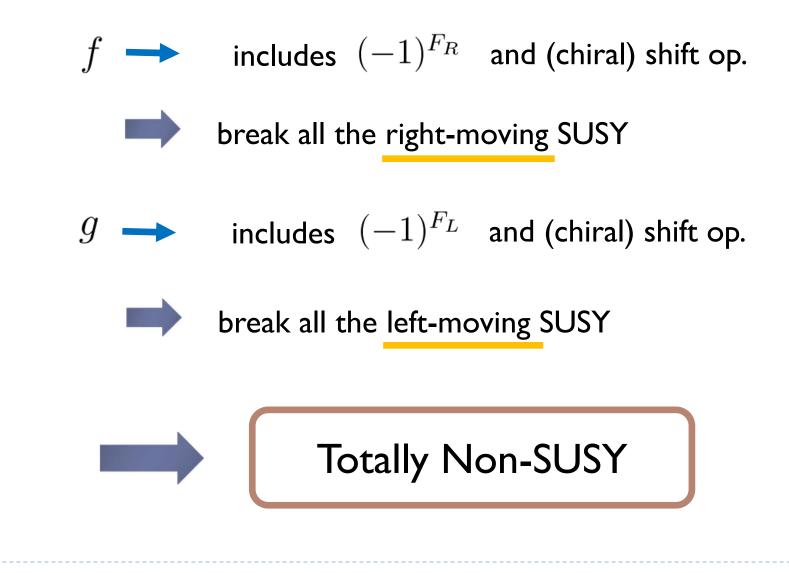


Removes massless Ramond states in the untwisted sector. (break SUSY?)

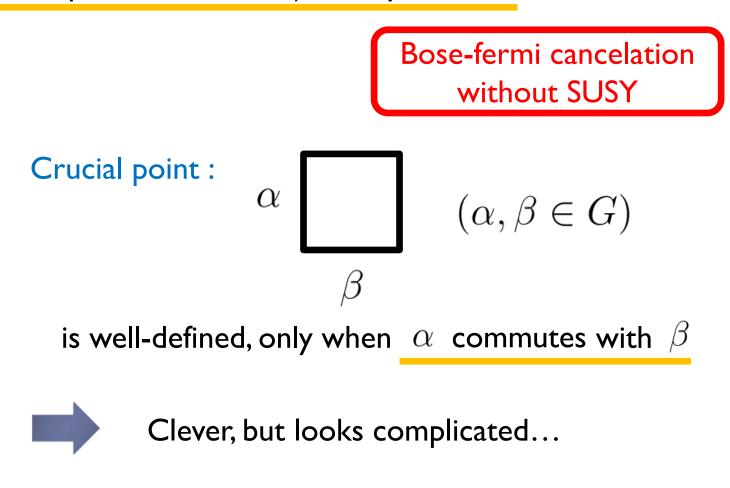
But, new massless Ramond states emerge in the twisted sector. (eventually, SUSY)

How to break SUSY?

Lightest Ramond states in the twisted sectors get massive. (No supercharge can appear.)



Non-SUSY string vacua (type II) with vanishing I-loop cosmological constant


[Kachru, Kumar, Silverstein 1998], [Kachru, Silverstein 1998], [Kachru, Silverstein 1998]

Asymmetric orbifold defined by the orbifold group:

$$G = \langle f,g \rangle$$
 f, g do not commute.
Non-abelian orbifold

Nevertheless, the 1-loop cosmological constant (torus partition function) strictly vanishes.

Closely related studies :

[Harvey 1998]

[Shiu, Tye 1998]

[Blumenhagen, Gorlich 1998]

[Angelantonj, Antoniadis, Forger 1999]

[Aoki, D'Hoker, Phong 2003]

.....

My studies

[Satoh, Y.S, Wada 2015]

[Y.S, Wada 2016]

[Satoh, Y.S, Uetoko 2017]

[Y.S, Uetoko 2018]

[Aoyama, Y.S 2020]

[Aoyama, Y.S to appear]

[Satoh, Y.S, Wada 2015]

- Realized by simpler (asymmetric) orbifold actions. (only single generator in the orbifold group)
- Each building block $Z_{(a,b)}(\tau)$ separately vanishes. (bose-fermi cancellation in each sector)
- No supercharges (globally defined on the total Hilbert space) exist.

$$Z(\tau) = \sum_{a,b} Z_{(a,b)}(\tau) \equiv \sum_{a,b} b \prod_{a}$$

$$Z_{(a,b)}\left(-\frac{1}{\tau}\right) = Z_{(b,-a)}(\tau)$$

$$Z_{(a,b)}\left(\tau+1\right) = Z_{(a,a+b)}(\tau)$$
'modular covariance'

[Aoyama, Y.S 2020]

[Aoyama, Y.S to appear]

- Asymmetric orbifolds of Gepner models
- Each building block Z_(a,b)(τ) does not necessarily vanish.
 (bose-fermi cancellation among different twisted sectors)

Non-SUSY Vacua with Vanishing Cosmological Constant : part 2

[Satoh, Y.S work in progress]

Non-SUSY Model with $\Lambda = 0$: part 2

Two possibilities

(1) $Z(au)\equiv 0$, but no supercharges exist.

(2)
$$Z(\tau)\not\equiv 0$$
 , but $~\Lambda=0$ no bose-fermi cancellation

Non-SUSY Model with $\Lambda = 0$: part 2

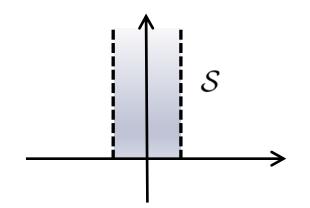
[Moore 1987] 'Atkin-Lehner Symmetry' $\Lambda = \langle \psi_1 | \psi_2 \rangle$

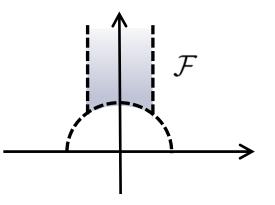
If ψ_1 , ψ_2 have opposite 'parity', Λ should vanish.

Beautiful idea, but difficulty in concrete model building ...

Non-SUSY Model with $\Lambda = 0$: part 2

Our idea :


$$Z_{\text{total}}(\tau) = \sum_{w,m\in\mathbb{Z}} Z_{(w,m)}(\tau)$$



(w,m) : 'winding numbers' ($SL(2,\mathbb{Z})$ -doublet) 'Polchinski's trick'

[Polchinski 1986]

$$\int_{\mathcal{S}} \frac{d^2 \tau}{\tau_2^2} \sum_{m \in \mathbb{Z}} Z_{(0,m)}(\tau) = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} \sum_{w,m \in \mathbb{Z}} Z_{(w,m)}(\tau)$$
(assume $Z_{(0,0)}(\tau) \equiv 0$)

Assume the situation :

28

interpretable as a particle theory with $\Lambda=0$, without the bose-fermi cancellation ? (including infinite number of mass spectrum)

Starting with various SUSY string vacua, we can realize this situation by implementing asymmetric orbifolding

> $Z_{(0,m)}(\tau) \sim$ 'untwisted sector' $Z_{(w,m)}(\tau) \ (w \neq 0) \sim$ 'twisted sector'

Summary

• Non-SUSY stirng vacua with $Z(\tau) \equiv 0$

can be constructed by asymmetric ('non-geometric') orbifold

• Vanishing CC with $Z(\tau) \not\equiv 0$

very difficult in string theory,

can be realized as particle vacua ?

ご清聴ありがとうございました。