Stability, enhanced gauge symmetry and suppressed

cosmological constant

in heterotic interpolating models

with S. Nakajima

On nonsusy hetero

H. Itoyama, Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), OCU

- arXiv: 1905.10745, PTEP INkjm1
- arXiv: 2003.1121, NPB INkjm 2
- INkjm3, in preparation
- I-Koga-Nakajima, in progress

Some background materials

- Q: What is string theory?
 - A : Nobody knows.
- began with the construction based on a single string:

cf. point particle vs. field (wave)

↓ quantization many body problem

quantization

↓ 2nd quantization

wavicle

- began as a candidate for unified theory that must include quantum gravity
 2015
 2015
 - \rightarrow decoupling of gravity by D brane \rightarrow direct connection to Planck scale
 - → : paradigm shift

- UV finite, but couplings run in real world, so need a big help from QFT.
- Ironically, more successful in stimulating LEEF construction at IR
 e.g. geometric engineering, solvable matrix models, ...
- α' only to begin with, but all marginal deformations of worldsheet action need to be taken into account
 - ⇒ translates into undetermined V.E.V. (moduli) of LEEF
 - \Rightarrow energetic consideration needed & nonsusy hetero helps \Rightarrow today's talk

"Conservative" view

• just do the two simple things:

i) $\Lambda_{\text{string}}^{1-\text{loop}} \sim \int_{\mathcal{F}} \frac{\mathrm{d}^2 \tau}{\tau_2^2} Z^{1-\text{loop}}(q) \longleftarrow$ partition function used for state counting

- ii) (tree) amplitude $\,\sim\,$ gaussian integration in the presence of "vertex operators"
- To elaborate little more

) using
$$\log \frac{a}{b} = -\int_0^\infty \frac{\mathrm{d}t}{t} \left(e^{-ta} - e^{-tb} \right)$$
, can derive $\Lambda_{\mathrm{string}}^{1-\mathrm{loop}}$
by $F_{\mathrm{QFT}}^{1-\mathrm{loop}} \sim \int \frac{\mathrm{d}t}{t} \cdots$ up to \mathcal{F} cf. Nambu 1950 @OCU

ii) just one diagram/amplitude

leave the rest to QFT

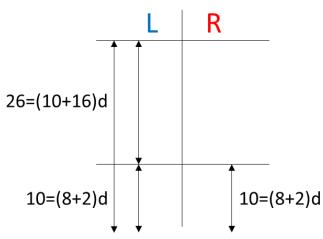
and/or i) $\alpha' \rightarrow 0 \ (\infty \text{ tension}) \text{ limit, interesting in the presence of } B_{\mu\nu}, \text{WL}$ ii) possibility of UV-IR separation in V_{eff} Abel, Dienes Newton Inst. talk...

Heterotic string & history

GHMR '84

Closed string only & inherently chiral with matter rep

Idea of Heterotic strings



adopt the lightcone coordinates Right mover: 10d superstring $\bar{X}_R^i(\tau - \sigma), \ \bar{\psi}^i(\tau - \sigma)$ Left mover: 26d bosonic string out of which internal 16d realize rank 16 current algebra $X_L^i(\tau + \sigma), \ X_L^I(\tau + \sigma)$ (or fermions)

- fanatically investigated during '84 \sim '87
- got bored during '88 \sim '95
- got converted to D-braners or quit '96 \sim
- In '86, modular inv (tachyon free) non SUSY hetero. found
- SUSY-non SUSY interpolating model upon comp. found

Dixon-Harvey Alvarez-Gaume et.al.

H.I.-T.Taylor

• resurgence of interest since around 2015 as nothing found beyond Higgs at LHC so far

<u>Cosmological constant in string with broken SUSY</u>

• Due to the cosmological observation up until around 2000, the cosmological const Λ_{obs} was thought to be exactly zero.

 \Rightarrow should have $\Lambda_{\text{string}} = 0$ superstring

The goal was to predict SUST scale M_s in multi TeV region and superpartners : CY...

 Now in 2020, about 70% of the mass of our universe is attributed to something called dark energy whose leading candidate is Λ_{obs} .

 \Rightarrow nonSUSY hetero is fine, M_s can be as large as M_{Planck} .

The issue is how to make $\Lambda_{\rm string}$ small $\sim \Lambda_{\rm obs}$ upon compactification while keeping nonaberian gauge group.

- #(theories with SUSY) < #(theories without SUSY)
 - Type IIB Type OB

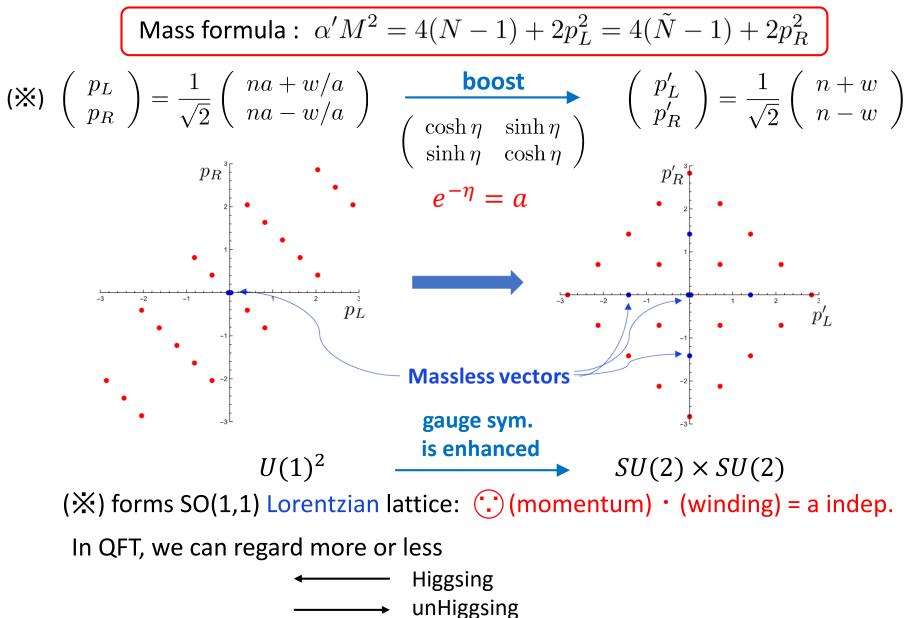
 - Heterotic $E_8 \times E_8$

- Heterotic SO(32) Heterotic $SO(16) \times E_8$...
- Heterotic $SO(16) \times SO(16)$
- Type IIA Type 0A Type I Type I Heterotic SO(32)• Heterotic $SO(24) \times SO(8)$

call M₁ call M₂ today interpolation by a radius ($a = \sqrt{\alpha'/R}$) or in general radii interpolation of M₁ and M₂ upon compactification '86: HI-Taylor

gauge symmetry enhancement

Simplest example: bosonic strings on S^1



Our choice

- M₂ = SO(16) x SO(16) tachyon free I-Taylor '86 & INkjm 1, 2 Dixon-Harvey '86, Alvarez-Gaume et al. '86
- warning: consider all marginal deformation of the world sheet action
 - \implies full set of Wilson lines should be turned on
 - generally spoil the nonabelian gauge group
 extrema ↔ points of sym. enhancement &
 the stable 9D perturbative vacuum can be determined

Our results and ongoing work

- completed the above analysis in the case of D = 9, d = 1 in susy restoring region
- a few $n_F = n_B$ models found
- the minimum is SO(32)/ $E_8 \times E_8$ gauge sym., massless bosons only \Rightarrow AdS spacetime
- $\frac{\partial}{\partial \alpha'} \Lambda_{\text{string}} = \text{dilaton tadpole is small to this order & will be made harmless}$
- a general analysis at d and study of interactions are in progress

The rest of my talk

II) 9D interpolating models

III) 9D interpolating models with WL

II)

formula for one-loop cosm. const in SUSY res. region:

 $\Lambda^{(D)} = \xi(n_F - n_B)a^D + O(e^{-1/a}) \quad \text{H.I.-Taylor ('86)}$ $M_1 \ 0 \xleftarrow{a} \infty \ M_2$

 n_{B} , n_{F} ; # of massless bosons & fermions in D dim.

sketch of the proof:

 $(*) = \tau_2^{\#} (\Lambda_{0,0} - \Lambda_{1/2,0}) e^{-m\pi\tau_2}$

SUSY restoring factor

- apply the Jacobi imaginary transf. m = 0 1st term & $m \neq 0$ 2nd term
- $n_B = n_F$ models (by now more than several existing) enjoy exponential suppression of $\Lambda^{(D)}$ e.g. Abel, Dienes ...
- In this setup, mass splitting due to broken SUSY is $\alpha' M_s^2 = a^2$. e.g. $a \approx 0.01$ interesting possibility

State counting & characters

- $\text{Tr}q^{L_0}\bar{q}^{\bar{L}_0}$ counts #(states) at level m as coeff. in $q(\bar{q})$ expansion
- It takes the form of $\sum_{i,j} \bar{\chi}_i^{\text{Vir}}(\bar{q}) X_{ij} \chi_j^{\text{Vir}}(q)$ and involves spacetime & internal SO(2n), n=4, 8 characters $\operatorname{ch}(\operatorname{rep}) = O_{2n}, V_{2n}, S_{2n}, C_{2n}$ expressible in terms

of the four theta constants and the Dedekind eta fn

$$\eta(\tau) = q^{-1/24} \prod_{n=1} (1 - q^n)$$

• SO(32) hetero $Z_B^{(8)} \left(\bar{V}_8 - \bar{S}_8 \right) \left(O_{16}O_{16} + V_{16}V_{16} + S_{16}S_{16} + C_{16}C_{16} \right)$ $E_8 \times E_8$ hetero $Z_B^{(8)} (\bar{V}_8 - \bar{S}_8) (O_{16} + S_{16}) (O_{16} + S_{16})$

Construction

The starting point is a supersymmetric heterotic strings on S^1 : (1) $Z_B^{(7)} \left(\bar{V}_8 - \bar{S}_8 \right) \left(\Lambda \left[\Gamma_{16}, 0, 0 \right] + \Lambda \left[\Gamma_{16}, 1/2, 0 \right] \right)$ $\int \Lambda \left[\underline{\Gamma, \alpha, \beta}\right] = \eta^{-16} \left(\eta \overline{\eta}\right)^{-1} \sum_{\pi^{I} \in \Gamma} \sum_{n \in 2(\mathbb{Z} + \alpha)} \sum_{w \in \mathbb{Z} + \beta} q^{\frac{1}{2} \left(\pi^{2} + p_{L}^{2}\right)} \overline{q}^{\frac{1}{2} p_{R}^{2}} \text{ with } p_{L} = \frac{1}{\sqrt{2}} \left(na + wa^{-1}\right),$ Γ_{16} : 16D Euclidean even self-dual lattice $p_R = \frac{1}{\sqrt{2}} \left(na - wa^{-1} \right)$ (2) **Projection by** $\frac{1+(-1)^r \gamma Q}{2}$ • *F*: spacetime fermion number • \mathcal{T} : half translation acting on X^9 • Q: half translation acting on Γ_{16} $\mathcal{T} \ket{n} = egin{cases} \ket{n} & n \in 2 m{Z} \ - \ket{n} & n \in 2 m{Z} + 1 \end{cases}$ $Q |\pi^{I}\rangle = \begin{cases} |\pi^{I}\rangle & \pi^{I} \in \Gamma_{16}^{+} \\ -|\pi^{I}\rangle & \pi^{I} \in \Gamma_{16}^{-} \end{cases} \Gamma_{16} = \Gamma_{16}^{+} + \Gamma_{16}^{-}$ Adding twisted sectors (3) $Z_{B}^{(7)}\left\{\bar{V}_{8}\left(\Lambda\left[\Gamma_{16}^{+},0,0\right]+\Lambda\left[\Gamma_{16}^{-},1/2,0\right]\right)-\bar{S}_{8}\left(\Lambda\left[\Gamma_{16}^{+},1/2,0\right]+\Lambda\left[\Gamma_{16}^{-},0,0\right]\right)\right\}$

+(twisted sectors) -> consist of $\Lambda [\Gamma_{16}^{\pm} + \delta, \alpha, 1/2]$ nonzero winding

suppressed in the $a \approx 0$ region

Example: SUSY $SO(32) \leftrightarrow SO(16) \times SO(16)$

Partition function

Contribution from X^I_L

splitting by Q

$$\eta^{-16} \sum_{\pi^{I} \in \Gamma_{16}} q^{\frac{1}{2}\pi^{2}} = O_{16}O_{16} + V_{16}V_{16} + S_{16}S_{16} + C_{16}C_{16}$$
• Contribution from X⁹

$$\int \eta^{-16} \sum_{\pi^{I} \in \Gamma_{16}^{+}} q^{\frac{1}{2}\pi^{2}} = 0$$

 $\Lambda_{\underline{\alpha},\underline{\beta}} = (\eta\bar{\eta})^{-1} \sum_{\underline{n}\in 2(\mathbf{Z}+\alpha)} \sum_{\underline{w}\in\mathbf{Z}+\beta} q^{\frac{1}{2}p_L^2} \bar{q}^{\frac{1}{2}p_R^2}$

$$\eta^{-16} \sum_{\substack{\pi^{I} \in \Gamma_{16}^{+} \\ \pi^{I} \in \Gamma_{16}^{-}}} q^{\frac{1}{2}\pi^{2}} = O_{16}O_{16} + S_{16}S_{16}$$

The contribution from the internal directions is $\Lambda \left[\Gamma_{16}^{\pm}, \alpha, \beta \right] = \Lambda_{\alpha, \beta} \left(\eta^{-16} \sum_{\pi^{I} \in \Gamma_{16}^{\pm}} q^{\frac{1}{2}\pi^{2}} \right)$

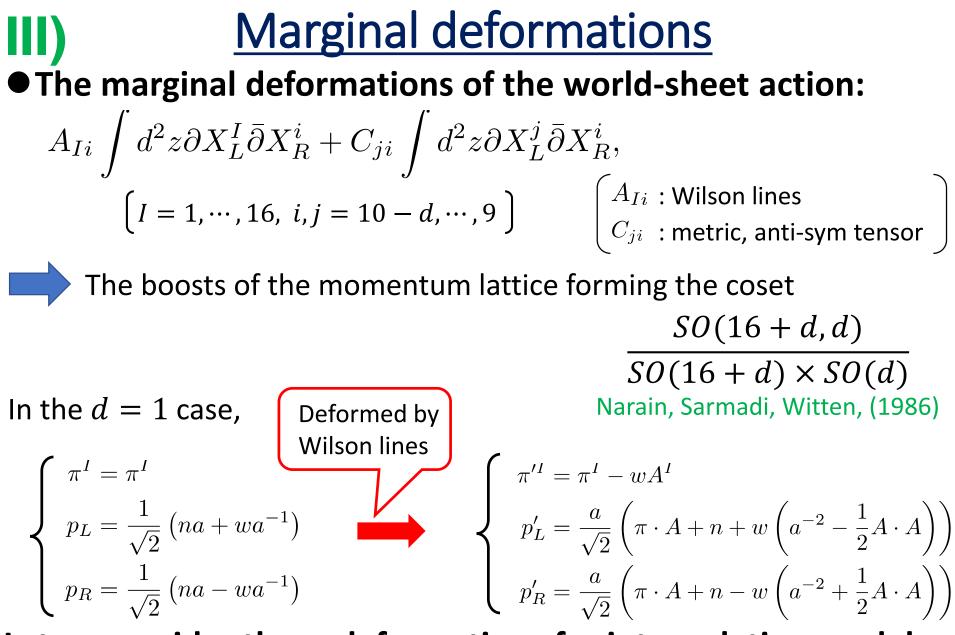
The one-loop partition function is

$$\begin{split} Z_{\rm int}^{(9)} &= Z_B^{(7)} \left\{ \Lambda_{0,0} \left[\bar{V}_8 \left(O_{16} O_{16} + S_{16} S_{16} \right) - \bar{S}_8 \left(V_{16} V_{16} + C_{16} C_{16} \right) \right] \\ &+ \Lambda_{1/2,0} \left[\bar{V}_8 \left(V_{16} V_{16} + C_{16} C_{16} \right) - \bar{S}_8 \left(O_{16} O_{16} + S_{16} S_{16} \right) \right] \\ &+ \Lambda_{0,1/2} \left[\bar{O}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) - \bar{C}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) \right] \\ &+ \Lambda_{1/2,1/2} \left[\bar{O}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) - \bar{C}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) \right] \right\} \\ & \text{twisted sectors} \end{split}$$

Endpoint limits

• $\underline{R} \rightarrow \infty$: contribution from the states with w = 0 only

• <u>R o 0</u>: contribution from the states with n = 0 only $\rightarrow \Lambda_{0,\beta} \to aZ_B^{(1)}, \Lambda_{1/2,\beta} \to 0$ $Z_{int}^{(9)} \to aZ_B^{(8)} \left\{ \bar{O}_8 \left(V_{16}C_{16} + C_{16}V_{16} \right) + \bar{V}_8 \left(O_{16}O_{16} + S_{16}S_{16} \right) - \bar{S}_8 \left(V_{16}V_{16} + C_{16}C_{16} \right) - \bar{C}_8 \left(O_{16}S_{16} + S_{16}O_{16} \right) \right\}$ <u>- $\bar{S}_8 \left(V_{16}V_{16} + C_{16}C_{16} \right) - \bar{C}_8 \left(O_{16}S_{16} + S_{16}O_{16} \right) \right\}$ </u> The partition function of $SO(16) \times SO(16)$ model



Let us consider these deformations for interpolating models and study the massless spectra!

Enhanced gauge symmetry

Mass formula: $\alpha' M^2 = 4(N-1) + 2(\pi^2 + p_L^2) = 4(\tilde{N} - a) + 2p_R^2 \left\{ a = \begin{cases} \frac{1}{2} & \text{(NS sector)} \\ 0 & \text{(R sector)} \end{cases} \right\}$ Massless states (NS) ① Sector1: N = 1, $\tilde{N} = \frac{1}{2}$, $\pi^{I} = p_{L} = p_{R} = 0$ ($\pi^{I} = n = w = 0$) NOT depend on moduli D.O.F (sector 1) = $8 \times (8 + 16)$ 10D gravity multiplet \uparrow \uparrow Gauge bosons of $U(1)^{16}$ ② Sector2: N = 0, $\tilde{N} = \frac{1}{2}$, $\frac{\pi^2 + p_L^2 = 2}{r}$, $p_R = 0$ depend on moduli

nonzero roots of a simply laced Lie algebra

At generic points in moduli space, the gauge symmetry is $U(1)^{16+2}$. However, there are special points satisfying $\pi \cdot A = -n$ for $\pi^2 = 2$, where the gauge symmetry is enhanced to a simply laced Lie group.

Example: SUSY $SO(32) \leftrightarrow SO(16) \times SO(16)$

Enhanced gauge symmetry

The gauge symmetry is enhanced to SO(32). $\succ A^{I} = \left((0)^{8}; (1)^{8} \right) \longrightarrow$ There is no massless fermion.

$$> A^{I} = \left((0)^{p}, (1)^{q}; (0)^{p'}, (1)^{q'} \right) \qquad p + q = p' + q' = 8$$

The massless spectrum at this point is

- The gauge bosons of $SO(2(p+q')) \times SO(2(q+p'))$
- The spinors in the bi-fund rep of $SO(2(p+q')) \times SO(2(q+p'))$

We can find a variety of symmetry enhancements depending on the Wilson lines. ?

Are there points where
$$m{n}_F=m{n}_B$$

In this model, the cosmological constant is suppressed when the gauge symmetry is enhanced to

 $SO(18) \times SO(14)$ or $SO(12) \times SO(12) \times U(4)$.

Example: SUSY $SO(32) \leftrightarrow SO(16) \times SO(16)$

Stability

• 1-loop effective potential: $\Lambda^{(9)} = -\frac{1}{2} \left(4\pi^2 \alpha'\right)^{-9/2} \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} Z^{(9)}$

Up to exponentially suppressed terms (in the $a \approx 0$ region),

$$\Lambda^{(9)}(a, A^{I}) \simeq C_{0} \left(\frac{a}{\sqrt{\alpha'}}\right)^{9} 8 \left\{-24 + 4 \sum_{I_{1}=1}^{8} \sum_{I_{2}=9}^{16} \cos\left(\pi A^{I_{1}}\right) \cos\left(\pi A^{I_{2}}\right) - 4 \sum_{\substack{I_{1}, I_{1}'=1\\I_{1}>I_{1}'}}^{8} \cos\left(\pi A^{I_{1}}\right) \cos\left(\pi A^{I_{1}'}\right) - 4 \sum_{\substack{I_{2}, I_{2}'=9\\I_{2}>I_{2}'}}^{16} \cos\left(\pi A^{I_{2}}\right) \cos\left(\pi A^{I_{2}'}\right) \right\}$$

• Stability analysis of Wilson lines

$$\frac{\partial \Lambda^{(9)}}{\partial A^{I}} = 0, \quad \frac{\partial^{2} \Lambda^{(9)}}{\partial A^{I} \partial A^{J}} \ge 0 \quad \xrightarrow{\text{solve}} A^{I} = \left((0)^{8}; (1)^{8} \right)$$
Maximally enhanced gauge symmetry

Maximally enhanced gauge symmetry Negative cosmological constant

How about the points with $n_F = n_B$?

Saddle points (Extrema with some unstable directions)

Our choice

- M₂ = SO(16) x SO(16) tachyon free I-Taylor '86 & INkjm 1, 2 Dixon-Harvey '86, Alvarez-Gaume et al. '86
- warning: consider all marginal deformation of the world sheet action
 - \implies full set of Wilson lines should be turned on
 - generally spoil the nonabelian gauge group
 extrema ↔ points of sym. enhancement &
 the stable 9D perturbative vacuum can be determined

Our results and ongoing work

- completed the above analysis in the case of D = 9, d = 1 in susy restoring region
- a few $n_F = n_B$ models found
- the minimum is SO(32) gauge sym., massless bosons only ⇒ AdS spacetime
- $\frac{\partial}{\partial \alpha'} \Lambda_{
 m string} =$ dilaton tadpole is small to this order & will be made harmless
- a general analysis at d and study of interactions are in progress

The rest of my talk

II) 9D interpolating models

III) 9D interpolating models with WL