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Great success of the SM

• Neutrino	mass		
• Flavor	puzzle		
• Dark	matter,	etc…

Unsolved 
problems

from	http://www.u-tokyo.ac.jp/ja/	
utokyo-research/feature-stories/atlas2012/
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世代の謎（Flavor	puzzle）：概観

世代構造　⇒　Higgsが何かのヒント？
Ecker,	Grimus,	Konetschny	‘80,		
Holthausen	et	al,	’12,	Feruglio,	et	al,	‘12

• Flavor	symmetry	(top-down)	
– U(1)FN			Froggatt	&	Nielsen,	1979,		1600cited	
– SU(2),	SU(3),	…		
– S3	,		Harari,	Haut,	Weyers,	1978,			A4,	S4,	…	
– Family	unification					Ramond	1979,	Wilczek	&	Zee,	1982	

								SO(16),	SO(18),	E7,	E8,	etc,	⊃	SO(10)×SU(3)	

• Flavor	texture	(bottom-up)													
– 6-zero	texture													Weinberg	1977,	Fritzsch	1977,		800cited			

– n(=2,3,4..)-zero	texture		
– Democratic	texture					Harari,	Haut,	Weyers,	1978	
– μ-τ	symmetry																Fukuyama	and	Nishiura	1997	
– Generalized	CP	sym.	
– Etc..
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atmospheric solarreactor Majorana	phase

Neutrino oscillation
MNS	matrix	

振り子の法則
世界は n次元フーリエモード

f(x) =

∫
dnk

(2π)n
f(k) eikx (1)

k = 0を選択したときのみ、世界から白黒を取り除く事が出来る！！

0.1 2010 北大セミナー
sin θ23 = 0.0405, sin θ13 = 0.00361, sin θ12 = 0.2265 (2)

θ23 ! 49.2± 1◦, θ13 = 8.6± 0.1◦, θ12 = 33.4± 0.8◦ (1σ) (3)

sin θC = 0.226 !
√
mu/mc,

√
md/ms ??

θ12, θ23, θ13, δPDG

VCKM =




1 0 0

0 c23 s23
0 −s23 c23








c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13








c12 s12 0

−s12 c12 0

0 0 1





(4)

0.1.1 2009 本田くんにラグランジアン

L = y1hēLeR + y2ν̄Lν
c
Lφ+B2hφ+ h.c, , (5)

→ gWµēRγ
µνcL + h.c, , (6)

0.2 2009 学会用

TmfT = mf , T =




1 0 0

0 0 1

0 1 0



 Tm∗
fT = mf , (7)

1

From		
PDG	2020
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1

sin	θ23	≒	1/√2,	bi-maximal? sin	θ12	≒	1/√3,	tri-maximal?

From		
PDG	2020



μ-τ	symmetry	 Fukuyama	and	Nishiura	97,		
C.	S.	Lam	01,		E.	Ma	and	M.	Raidal	01

bi-maximal	混合を保証するZ2	symmetry

もう一方の質量行列が対角的な基底で 

2-3世代の45°回転 (最大混合) で変換すると、

残りは1-2回転だけで対角化
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Note:	TBMとK4	=	Z2×Z2	対称性
２つの離散対称性が厳密なTri-Bi-Maximal	混合を予言

C.S.	Lam,	PRD	74,	113004,	(2006),	PLB	656,	193-198,	(2007),	PRL	101,	121602	(2008).

それぞれのZ2	対称性が固有ベクトルを固定
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・μ-τ	symmetry		

				2-3	flavorの交換	

・magic	symmetry		
どんな行や列の和も	
等しい（魔法陣）

C. S. Lam, Phys. Lett. B 640 (2006) 260,  P. F. Harrison and W. G. Scott, Phys. Lett. B 594, 324 (2004)
R. Friedberg and T. D. Lee, HEPNP 30, 591 (2006).

3	parameters

このK4	=	Z2	×	Z2	対称性（◁	A4）を課すとTBMで対角化	
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・μ-τ	symmetry		

				2-3	flavorの交換	

・magic	symmetry		
どんな行や列の和も	
等しい（魔法陣）	

C. S. Lam, Phys. Lett. B 640 (2006) 260,  P. F. Harrison and W. G. Scott, Phys. Lett. B 594, 324 (2004)
R. Friedberg and T. D. Lee, HEPNP 30, 591 (2006).

3	parameters

このK4	=	Z2	×	Z2	対称性（◁	A4）を課すとTBMで対角化	

線形代数の試験問題を	
無限に生成可能

Note:	TBMとK4	=	Z2×Z2	対称性
２つの離散対称性が厳密なTri-Bi-Maximal	混合を予言



μ-τ	reflection	symmetry	
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2

m0	は一般的な実行列	(9	parameters).	

23 最大混合で回すと、
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pure	imaginal

real

=	μ-τ	symmetry	+	複素共役

m0	は一般的な実行列	(9	parameters).	

23 最大混合で回すと、
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m0	は一般的な実行列	(9	parameters).	

もう一方の質量行列が対角的な基底で 

23 最大混合で回すと、
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実行列	m0	は直交行列で対角化

負の固有値	⇒	

最大マヨラナ位相

μ-τ	reflection	は一般化されたCP対称性のひとつ	
a	generalized	CP	(GCP)	symmetry	
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0.1.1 2009 本田くんにラグランジアン

L = y1hēLeR + y2ν̄Lν
c
Lφ+B2hφ+ h.c, , (14)

→ gWµēRγ
µνcL + h.c, , (15)

2

Ecker,	Grimus,	Konetschny	‘80,		
Holthausen	et	al,	’12,	Feruglio,	et	al,	‘12
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• μ-τ	symmetry	

• μ-τ	reflection	symmetry	

• Reflection	symmetry	

	μ-τ	(reflection)	symmetry

(in the diagonal basis)

Harrison	&	Scott,	‘02	
Grimus	&	Lavoura	‘02

Fukuyama	and	Nishiura	97,		
C.	S.	Lam	01,		E.	Ma	and	M.	Raidal	01

M.	Yang,	’20,		submitting	to	Chin.Phys.C

振り子の法則
世界は n次元フーリエモード

f(x) =

∫
dnk

(2π)n
f(k) eikx (1)

k = 0を選択したときのみ、世界から白黒を取り除く事が出来る！！

0.1 2010 北大セミナー
sin θ23 = 0.0405, sin θ13 = 0.00361, sin θ12 = 0.2265 (2)

θ23 ! 49.2± 1◦, θ13 = 8.6± 0.1◦, θ12 = 33.4± 0.8◦ (1σ) (3)

sin θC = 0.226 !
√
mu/mc,

√
md/ms ??

θ12, θ23, θ13, δPDG

VCKM =




1 0 0

0 c23 s23
0 −s23 c23








c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13






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−s12 c12 0

0 0 1





(4)
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a b b

c d e

c e d



 (5)
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2



 =




a

√
2b 0√

2c d+ e 0

0 0 d− e





(6)

TBM mass matrix




√
2
3 − 1√

6
− 1√

6
1√
3

1√
3

1√
3

0 − 1√
2

1√
2








c+ d− b b b

b c d

b d c









√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2



 =




c+ d− 2b 0 0

0 c+ d+ b 0

0 0 c− d





(7)
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動機：Universal	texture

すべてのfermionに23対称性と0	textureを課す

Koide,	Nishiura,	Matsuda,	
Kikuchi,	Fukuyama,	‘02

質量と混合がだいたい上手くいくが、

課題：θ13を大きくしたい	

　       CP位相も含めて統一的textureにしたい	

																												⇒	μ-τ	reflection	symmetryを用いる 　

2020現在:			sin θ13 ≃ 0.15



統一的なμ-τ	reflection
• 同じμ-τ	reflectionを課すと、相殺してδCKM	=	0になる	

• ⇒	別々のμ-τ	reflection	symmetriesが必要

M.	Yang,	’20,	PLB	806

また、仮定として

→ 質量固有値とCKM混合はOK



Four-zero	textureとの関係
階層的基底でfour-zero	textureになる

観測

Fritzsch	&	Xing,		95

（元々のUniversal		textureではBf	=	0）

近似的に	12	×	23	混合のみで対角化	⇒	CKM行列の良い記述
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（元々のUniversal		textureではBf	=	0）

近似的に	12	×	23	混合のみで対角化	⇒	CKM行列の良い記述

Hermite性を課したとき、	

(mf)11=0で１つ,	(mf)13=(mf)31=0で１つ



Four-zero	textureとの関係
階層的基底でfour-zero	textureになる

観測

Fritzsch	&	Xing,		95

（元々のUniversal		textureではBf	=	0）

近似的に	12	×	23	混合のみで対角化	⇒	CKM行列の良い記述

Hermite性を課したとき、	

(mf)11=0で１つ,	(mf)13=(mf)31=0で１つ

Maximal	CPV	!



Reflection	symmetries

この階層的基底において、μ-τ	reflectionは	
対角的なgeneralized	CP	対称性になる

M.	Yang,	’20,	Chin.	Phys.	Cに投稿中

Ecker,	Grimus,	Konetschny	‘80,		Holthausen	et	al,	’12,	Feruglio,	et	al,	‘12

片方の第１世代のみに	
CP位相を集中する

pure	imaginal

S =




−1

3
2
3

2
3

2
3 −1

3
2
3

2
3

2
3 −1

3



 SmfS = mf , (8)

mu-tau reflection symmetry
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2


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2

1√
2



 =




a

√
2b 0√

2b c+ d 0

0 0 c− d???





(9)

a ∼ f ∈ R

Tum
∗
fTu = m, mf =




a b+ ic b− ic

b− ic d e+ if

b+ ic e− if d



 (10)

次の bi-maximal変換で
UBM =




1 0 0

0 1/
√
2 1/

√
2

0 −1/
√
2 1/

√
2



 , (11)

UBMmfU
†
BM =




a

√
2b −

√
2ic√

2b d+ e if√
2ic −if d− e



 =




1 0 0

0 1 0

0 0 −i



m0




1 0 0

0 1 0

0 0 i



 ,

(12)

Rm0RT =




±m1 0 0

0 ±m2 0

0 0 ±m3



 .

GCP

ψ′
i = UijCψ

∗
j (t,−x) , m′

ψ = ULm
∗
ψU

†
R , (13)

0.1.1 2009 本田くんにラグランジアン

L = y1hēLeR + y2ν̄Lν
c
Lφ+B2hφ+ h.c, , (14)

→ gWµēRγ
µνcL + h.c, , (15)
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Reflection	symmetries

この階層的基底において、μ-τ	reflectionは	
対角的なgeneralized	CP	対称性になる

M.	Yang,	’20,	Chin.	Phys.	Cに投稿中

Ecker,	Grimus,	Konetschny	‘80,		Holthausen	et	al,	’12,	Feruglio,	et	al,	‘12

μ-τ	reflection	symmetriesからμ-τ	symmetry	を引いたもの	
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CP位相を集中する
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Universal	four-zero	texture
すべてのfermionに同じ対称性とtextureを課す



Universal	four-zero	texture
すべてのfermionに同じ対称性とtextureを課す

Concise	and	
Elegant	!!



Universal	four-zero	texture

レプトンは4	×	2		parameter	←	3	lepton	mass,	2	neutrino	mass,	3	mixing	

⇒	m1,	δCP,	α2,3を決定

すべてのfermionに同じ対称性とtextureを課す

Concise	and	
Elegant	!!



four-zero	textureの正当性（またあとで）

・YukawaのHermite性	

　←	SU(2)L	×	SU(2)R	modelでのパリティ対称性	

・(mf)11	=	0	

　しばしば離散対称性で実現	

					第１世代の質量を禁止するカイラル対称性を示唆	

・	(mf)12	≠	0,	(mf)13	=	0,	

　やや非自明だが、LR	modelで正当化可能（あとで）

振り子の法則
世界は n次元フーリエモード

f(x) =

∫
dnk

(2π)n
f(k) eikx (1)

k = 0を選択したときのみ、世界から白黒を取り除く事が出来る！！

0.1 2011 学会発表
Parity対称性

L ! ψ̄LiYfijΦψRj + ψ̄RiY
†
fijΦ

∗ψLj , (2)

P :ψL ↔ ψR, Φ∗ ↔ Φ ⇒ Yf = Y †
f (3)

0.2 2010 北大セミナー
sin θ23 = 0.0405, sin θ13 = 0.00361, sin θ12 = 0.2265 (4)

θ23 $ 49.2± 1◦, θ13 = 8.6± 0.1◦, θ12 = 33.4± 0.8◦ (1σ) (5)

sin θC = 0.22 $
√
md/ms ?

θ12, θ23, θ13, δPDG

VCKM =




1 0 0

0 c23 s23
0 −s23 c23








c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13








c12 s12 0

−s12 c12 0

0 0 1





(6)

mf =




a b b

c d e

c e d



 (7)

mu-tau symmetry
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2

1√
2

0 − 1√
2

1√
2




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a b b

c d e

c e d








1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2



 =




a

√
2b 0√

2c d+ e 0

0 0 d− e





(8)
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Calculation	of	UMNS

Ue3はO.K.	(an	input	parameter)

4

The value with (without) parentheses is induced from
full calculation (only leading order). Since s13 = −0.14
is small, JPDG (35) and the perturbative expansion (38)
gives an approximate formula of sin δCP ,

sin δCP "
√

me

mµ

c13s23
s13

" −0.390 (−0.360). (39)

cos δCP is obtained as

cos δCP =
|UPDG

22 |2 − (sPDG
12 sPDG

13 sPDG
23 )2 − (cPDG

12 cPDG
23 )2

−2sPDG
12 sPDG

13 sPDG
23 cPDG

12 cPDG
23

(40)

=
|U22|2(1− |U13|2)2 − |U13|2|U12|2|U23|2 − |U11|2|U33|2

−2|U13||U12||U23||U11||U33|
(41)

= −0.920. (42)

Therefore

δCP " 203◦ (201◦). (43)

This value is rather close to the best fit for the normal
hierarchy and in the 1σ region δCP /◦ = 217+40

−28 [40]. This
result does not depend on the mass ordering of neutrinos.

B. Majorana phases, universal zero texture and
masses

The standard PDG convention of the Majorana phases
is

UMNS = UP, P ≡ diag(1, eiα2/2, eiα3/2). (44)

The neutrino mass matrix mν reconstructed in the four-
zero basis is obtained as

mν =




−i 0 0
0 1 0
0 0 1



VνP




m1 0 0
0 m2 0
0 0 m3



PV T
ν




−i 0 0
0 1 0
0 0 1



 .

(45)

If this mass matrix with Majorana phases satisfies the
symmetry Eq. (16), α2,3/2 = nπ/2 (n = 0, 1, 2, ...) should
be hold. This result agrees to the previous studies by
Xing et. al. [19, 21].

Note that the 2-3 mixing of Vν and Ve cannot be de-
termined independently. We assume that of Ve is small
(equivalently,

√
1− re " mµ/mτ in Eq. (19) ). More-

over, imposition of universal texture (mf )11 = 0 for
f = u, d, ν, e [23] determines the mass eigenvalues m1,2,3

from a condition

m1 =
−eiα2m2s212 − eiα3m3t213

c212
, (46)

where t13 ≡ tan θ13. For the normal hierarchical case,

|m1| = 6.20meV for (α2,α3) = (0, 0) or (π,π) (47)

= 2.54meV for (α2,α3) = (0,π) or (π, 0). (48)

Here, we used the mass differences from the global fit [40]

∆m2
21 = 73.9 [meV2], ∆m2

31 = 2525 [meV2]. (49)

Besides, for the inverted hierarchical case, the solutions
of Eq. (46) do not have real values and then contradict
with the reflection symmetries.
Finally, the effective massmee of the double beta decay

is obtained as [46]

|mee| =

∣∣∣∣∣

3∑

i=1

miU
2
ei

∣∣∣∣∣ (50)

= |(cPDG
13 )2[m1(c

PDG
12 )2 +m2(s

PDG
12 )2eiα2 ]

+m3(s
PDG
13 )2ei(α3−2δ)|, (51)

= 0.17meV for (α2,α3) = (0, 0) or (π,π), (52)

= 1.24meV for (α2,α3) = (0,π) or (π, 0). (53)

These values are rather small than other models because
it vanishes in a limit of (mν)11 =

√
me/mµ = 0. In

particular, the phase factor −i in Eq. (45) generates de-
structive interferences for α2 = α3.

IV. CONCLUSIONS

In this letter, we consider exact µ − τ reflection sym-
metries for quarks and leptons. By a bi-maximal trans-
formation, up- and down-type quark mass matrices with
four-zero textures separately satisfy exact µ−τ reflection
symmetries, Tu,d m∗

u,d Tu,d = mu,d.
The same symmetries also hold in the lepton sec-

tor, Tu,d m∗
ν,e Tu,d = mν,e. Reconciliation between the

µ− τ reflection symmetries and observed sin θ13 predicts

δCP " sin−1[
√

me
mµ

c13s23
s13

] " 203◦. This value is rather

close to the best fit for the normal hierarchy and in the
1σ region δCP /◦ = 217+40

−28.
Moreover, assuming universal texture (mf )11 = 0 for

f = u, d, ν, e and small 2-3 mixing of the lepton mass ma-
trix, we obtain the lightest neutrino mass |m1| = 6.26 or
2.54 meV. This result only holds in the case of the nor-
mal hierarchy, because the solutions contradict with the
reflection symmetries for the inverted hierarchical case.
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i = UijCψ

∗
j (t,−x) , m′
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0.1.1 2009 本田くんにラグランジアン

L = y1hēLeR + y2ν̄Lν
c
Lφ+B2hφ+ h.c, , (18)

→ gWµēRγ
µνcL + h.c, , (19)

0.2 2009 学会用

TmfT = mf , T =




1 0 0

0 0 1

0 1 0



 Tm∗
fT = mf , (20)

⇒ θ23 = ±45◦

δCP = ±90◦, α2,3/2 = 0 or ±π/2
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	νは階層が弱い→対角化は13混合を無視できない



Calculation	of	UMNS
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The value with (without) parentheses is induced from
full calculation (only leading order). Since s13 = −0.14
is small, JPDG (35) and the perturbative expansion (38)
gives an approximate formula of sin δCP ,

sin δCP "
√

me

mµ

c13s23
s13

" −0.390 (−0.360). (39)

cos δCP is obtained as

cos δCP =
|UPDG

22 |2 − (sPDG
12 sPDG

13 sPDG
23 )2 − (cPDG

12 cPDG
23 )2

−2sPDG
12 sPDG

13 sPDG
23 cPDG

12 cPDG
23

(40)

=
|U22|2(1− |U13|2)2 − |U13|2|U12|2|U23|2 − |U11|2|U33|2

−2|U13||U12||U23||U11||U33|
(41)

= −0.920. (42)

Therefore

δCP " 203◦ (201◦). (43)

This value is rather close to the best fit for the normal
hierarchy and in the 1σ region δCP /◦ = 217+40

−28 [40]. This
result does not depend on the mass ordering of neutrinos.

B. Majorana phases, universal zero texture and
masses

The standard PDG convention of the Majorana phases
is

UMNS = UP, P ≡ diag(1, eiα2/2, eiα3/2). (44)

The neutrino mass matrix mν reconstructed in the four-
zero basis is obtained as

mν =




−i 0 0
0 1 0
0 0 1



VνP




m1 0 0
0 m2 0
0 0 m3



PV T
ν




−i 0 0
0 1 0
0 0 1



 .

(45)

If this mass matrix with Majorana phases satisfies the
symmetry Eq. (16), α2,3/2 = nπ/2 (n = 0, 1, 2, ...) should
be hold. This result agrees to the previous studies by
Xing et. al. [19, 21].

Note that the 2-3 mixing of Vν and Ve cannot be de-
termined independently. We assume that of Ve is small
(equivalently,

√
1− re " mµ/mτ in Eq. (19) ). More-

over, imposition of universal texture (mf )11 = 0 for
f = u, d, ν, e [23] determines the mass eigenvalues m1,2,3

from a condition

m1 =
−eiα2m2s212 − eiα3m3t213

c212
, (46)

where t13 ≡ tan θ13. For the normal hierarchical case,

|m1| = 6.20meV for (α2,α3) = (0, 0) or (π,π) (47)

= 2.54meV for (α2,α3) = (0,π) or (π, 0). (48)

Here, we used the mass differences from the global fit [40]

∆m2
21 = 73.9 [meV2], ∆m2

31 = 2525 [meV2]. (49)

Besides, for the inverted hierarchical case, the solutions
of Eq. (46) do not have real values and then contradict
with the reflection symmetries.
Finally, the effective massmee of the double beta decay

is obtained as [46]

|mee| =

∣∣∣∣∣

3∑

i=1

miU
2
ei

∣∣∣∣∣ (50)

= |(cPDG
13 )2[m1(c

PDG
12 )2 +m2(s

PDG
12 )2eiα2 ]

+m3(s
PDG
13 )2ei(α3−2δ)|, (51)

= 0.17meV for (α2,α3) = (0, 0) or (π,π), (52)

= 1.24meV for (α2,α3) = (0,π) or (π, 0). (53)

These values are rather small than other models because
it vanishes in a limit of (mν)11 =

√
me/mµ = 0. In

particular, the phase factor −i in Eq. (45) generates de-
structive interferences for α2 = α3.

IV. CONCLUSIONS

In this letter, we consider exact µ − τ reflection sym-
metries for quarks and leptons. By a bi-maximal trans-
formation, up- and down-type quark mass matrices with
four-zero textures separately satisfy exact µ−τ reflection
symmetries, Tu,d m∗

u,d Tu,d = mu,d.
The same symmetries also hold in the lepton sec-

tor, Tu,d m∗
ν,e Tu,d = mν,e. Reconciliation between the

µ− τ reflection symmetries and observed sin θ13 predicts

δCP " sin−1[
√

me
mµ

c13s23
s13

] " 203◦. This value is rather

close to the best fit for the normal hierarchy and in the
1σ region δCP /◦ = 217+40

−28.
Moreover, assuming universal texture (mf )11 = 0 for

f = u, d, ν, e and small 2-3 mixing of the lepton mass ma-
trix, we obtain the lightest neutrino mass |m1| = 6.26 or
2.54 meV. This result only holds in the case of the nor-
mal hierarchy, because the solutions contradict with the
reflection symmetries for the inverted hierarchical case.
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δCP	は第３象限に存在



物理的予言

(me	が4-zero	texture

の基底で)

ニュートリノ質量行列を再構成できる

0	textureから予言が発生

（逆階層では解なし、
     textureと矛盾）

Double	beta	decayのeffective	mass

振り子の法則
世界は n次元フーリエモード

f(x) =

∫
dnk

(2π)n
f(k) eikx (1)

k = 0を選択したときのみ、世界から白黒を取り除く事が出来る！！

0.1 2011 秋の学会発表
Parity対称性

L ! ψ̄LiYfijΦψRj + ψ̄RiY
†
fijΦ

∗ψLj , (2)

P :ψL ↔ ψR, Φ∗ ↔ Φ ⇒ Yf = Y †
f (3)

(mν)11 = (mν)13 = 0 ⇒

m1 $ 2.5[meV], (α2,α3) = (π, 0).

m1 $ −6.2[meV], (α2,α3) = (0, 0).

|mee| =
∣∣∣∣

3∑

i=1

miU
2
ei

∣∣∣∣ $ 1.24[meV] (α2,α3) = (π, 0) (4)

$ 0.17[meV] (α2,α3) = (0, 0). (5)

0.2 2010 北大セミナー
sin θ23 = 0.0405, sin θ13 = 0.00361, sin θ12 = 0.2265 (6)

θ23 $ 49.2± 1◦, θ13 = 8.6± 0.1◦, θ12 = 33.4± 0.8◦ (1σ) (7)

sin θC = 0.22 $
√
md/ms ?

θ12, θ23, θ13, δPDG
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再構成された質量行列の数値

retained as approximate ones. The strong CP problem is considered as a related
issue.

The reflection symmetries are not invariant under the renormalization group
equations (RGEs) of the SM. RGEs of quarks at one-loop order are given by [122],

16π2dYu
dt

= [αu + Cu
u (YuY

†
u ) + Cd

u(YdY
†
d )]Yu, (49)

16π2dYd
dt

= [αd + Cu
d (YuY

†
u ) + Cd

d (YdY
†
d )]Yd, (50)

where t = ln(µ)/mZ , µ is an arbitrary renormalization scale, αf are flavor independent

contributions from the gauge and Higgs bosons. The coefficients Cf ′

f are given by

Cd
u = Cu

d = −3/2, Cu
u + Cd

d = 3/2. (51)

The contributions of leptons are neglected.
It has been pointed out that the four-zero texture and its CKM phase are ap-

proximately RGE invariant [123, 13]. The same statement holds for the reflection
symmetries. One of the best fit values for Yu,d [13]

Yu " 0.9mt

√
2

v




0 0.0002i 0

−0.0002i 0.10 0.31
0 0.31 1



 "
√
2

v




0 i

√
mumc 0

−i
√
mumc O(mt) O(mt)
0 O(mt) O(mt)



 , (52)

Yd " 0.9mb

√
2

v




0 0.005 0

0.005 0.13 0.31
0 0.31 1



 "
√
2

v




0

√
mdms 0√

mdms O(mb) O(mb)
0 O(mb) O(mb)



 , (53)

can reconstruct a term in Eq. (50) as

YuY
†
uYd =




1.17× 10−9i 2.34× 10−12 + 2.56× 10−7i 7.99× 10−7i
6.22× 10−6 0.00140− 1.17× 10−9i 0.00438
2.00× 10−5 0.00450− 3.63× 10−9i 0.0141



 (54)

"




iCuB̃uCd iCu(BuBd + B̃uB̃d) iCu(BuAd + B̃uBd)

(BuBu + B̃uB̃u)Cd O(BuAuBd)− iB̃uCuCd O(BuAuAd)
(AuBu +BuB̃u)Cd O(AuAuBd)− iBuCuCd O(AuAuAd)



 . (55)

In Eq. (55), several terms at the leading order are represented. Components of the

first row and column (specifically, (1, i) and (j, 1) components) of the term YuY
†
uYd are

insignificant. This is due to the smallness of |(mu,d)12| = |Cu,d| "
√
mu,dmc,s. Further-

more, influence to complex phases of (2, 2), (2, 3), (3, 2) and (3, 3) components are also
negligible because they are the second-order corrections of the small parameters
Cu,d.

Since the flavor depending terms in Eqs. (49) and (50) have a similar structure,
flavor dependent contributions almost do not change the couplings of the first gen-
erations. This statement holds without the four-zero texture as long as couplings in
the first row and column of the Yukawa matrices are sufficiently small. Therefore,
the reflection symmetries with these properties are approximately RGE invariant
and then they inherit flavor structures at a high energy scale.
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O(mt) O(mb)

素朴には	d-e	統一に失敗…？？

(摂動が悪いかも、なので2～5%くらい誤差あるかも)

(エルミート性か(md)13	=	0を放棄	…？)

Z.-z.	Xing	&	Z.-h.	Zhao,	NPB	897,	‘15

O(mτ)

with re ≡ Ae/mτ . PM ≡ diag(1, eiα2/2, eiα3/2) is the Majorana phases.
The mixing angles and mass differences of the latest global fit [133]

θPDG
23 = 49.7◦, θPDG

12 = 33.82◦, θPDG
13 = 8.61◦, (45)

∆m2
21 = 73.9 [meV2], ∆m2

31 = 2525 [meV2], (46)

determines the Dirac phase in the PDG parameterization δCP as

sin δCP = −0.390 #
√

me

mµ

c13s23
s13

, δCP # 203◦. (47)

It is very close to the best fit for the normal hierarchy (NH) δCP /◦ = 217+40
−28 [133].

Including the Majorana phases, one can reconstruct the neutrino mass matrix mν as

mν = VeUMNS




m1 0 0
0 m2 0
0 0 m3



UT
MNSV

T
e . (48)

The µ− τ reflection symmetries (6) restrict the Majorana phases to be α2,3/2 = nπ/2 (n = 0, 1)
[73]. The nontrivial phase π/2 comes from a negative mass eigenvalues. Moreover, if universal
texture (mf )11 = 0 for f = u, d, ν, e [38] and small 2-3 mixing of Ve is assumed, we can determine
the lightest neutrino mass m1 from the condition of the texture

m1 =
−eiα2m2s212 − eiα3m3t213

c212
, (49)

where t13 ≡ s13/c13. The numerical values of the mass are found to be

|m1| = 6.20 [meV] for (α2,α3) = (0, 0) or (π,π), (50)

= 2.54 [meV] for (α2,α3) = (0,π) or (π, 0), (51)

for the normal hierarchy case.
For the inverted mass hierarchy, the solutions do not have real values and then contradict

the reflection symmetries.

4.1 Universal four-zero texture

Here, we show a universal four-zero texture compatible with neutrino mixing parameters. An
additional assumption in this paper is (mν)13 = 0. This assumption can be justified like Eq. (38)
in the left-right symmetric models. This constraint realizes the universal four-zero texture and
determines the mixing parameter re = Ae/mτ in Eq. (44).

The mass matrix mν (48) is a matrix function of α2,α3,m1, and re. Solving an equation
(mν)13 = 0, we found two solutions of universal four-zero texture. The first solution with a large
re # 0.996 and its mass eigenvalues are found to be

mν0 #




0 −8.86i 0

−8.86i 29.3 26.4
0 26.4 14.6



 [meV] for (α2,α3) = (π, 0), (52)

(m1 ,m2 ,m3) = (2.54, −8.96, 50.3) [meV]. (53)
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Indeed the Majorana phases α2 = π,α3 = 0 are realized. In this basis, the charged lepton mass
matrix also shows the four-zero texture

me !




0 −7.058 0

−7.058 107.873 96.12
0 96.12 1740



 [MeV] for (mdiag
e )11 < 0, (mdiag

e )22 > 0 , (54)

!




0. 7.058 0

7.058 −95.898 108.1
0 108.1 1740



 [MeV] for (mdiag
e )11 > 0, (mdiag

e )22 < 0) . (55)

The second solution has a small re ! 0.0024;

m̃ν0 =




0 10.5 i 0

10.5 i 24.9 −22.0
0 −22.0 30.1



 [meV] for (α2,α3) = (0, 0), (56)

(m1 ,m2 ,m3) = (−6.20, 10.6, 50.6) [meV]. (57)

This solution results in (me)22 ! mτ and seems to be somewhat unnatural. However, perhaps it
relates large 22 and 23 elements of quarks Eq. (16) and (17) by a grand unified theory (GUT).

The right-handed neutrino mass matrix MR can be reconstructed from the type-I seesaw
mechanism [111–114] with some GUT relations. A u− ν unification such as in the Pati–Salam
GUT [108] can determine Yν from Eq. (16) as

Yν = Yu ! 0.9mt

√
2

v




0 0.0002 i 0

−0.0002 i 0.10 0.31
0 0.31 1



 . (58)

From Eq. (52) and (58), MR also displays a four-zero texture because the four-zero texture
is seesaw invariant [4, 6],

MR =
v2

2
Yνm

−1
ν0 Y

T
ν (59)

=




0 −1.08 i× 108 0

−1.08 i× 108 1.26× 1014 4.07× 1014

0 4.07× 1014 1.32× 1015



 [GeV]. (60)

Evidently MR also satisfies the reflection symmetry (14),

RM∗
RR = MR. (61)

Therefore, all the fermion mass respects the reflection symmetry with a four-zero texture.
The eigenvalues of MR are found to be

(MR1 ,MR2 ,MR3)

= (2.86× 106 , 3.73× 109 , 1.44× 1015) [GeV]. (62)

The Yukawa matrices Yν (58) is evaluated at mZ scale. Other renormalized values of quark
masses will lead to smaller eigenvalues of MR. For example, Yν is determined in other Pati–
Salam GUT

Yν =




i 0 0
0 1 0
0 0 1








0 Cν 0
Cν B̃ν Bν

0 Bν Aν








−i 0 0
0 1 0
0 0 1



 , (63)
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振り子の法則
世界は n次元フーリエモード

f(x) =

∫
dnk

(2π)n
f(k) eikx (1)

k = 0を選択したときのみ、世界から白黒を取り除く事が出来る！！

0.1 2011 秋の学会発表
Parity対称性

L ! ψ̄LiYfijΦψRj + ψ̄RiY
†
fijΦ

∗ψLj , (2)

P :ψL ↔ ψR, Φ∗ ↔ Φ ⇒ Yf = Y †
f (3)

(mν)11 = 0 ⇒ (mν)13 = 0 ⇒

m1 $ 2.5[meV], (α2,α3) = (π, 0).

m1 $ −6.2[meV], (α2,α3) = (0, 0).

|mee| =
∣∣∣∣

3∑

i=1

miU
2
ei

∣∣∣∣ $ 1.24[meV] (α2,α3) = (π, 0) (4)

$ 0.17[meV] (α2,α3) = (0, 0). (5)

0.2 2010 北大セミナー
sin θ23 = 0.0405, sin θ13 = 0.00361, sin θ12 = 0.2265 (6)

θ23 $ 49.2± 1◦, θ13 = 8.6± 0.1◦, θ12 = 33.4± 0.8◦ (1σ) (7)

sin θC = 0.22 $
√
md/ms ?

θ12, θ23, θ13, δPDG

1

（もう一方の解は(me)22～mτでやや不自然）

の解



シーソー機構
Four-zero	textureとreflection	symmetriesはSeesaw不変	

⇒	Yνにこれを課せばMRも従う Nishiura,	Matsuda,	and	Fukuyama	’99,	

Minkowski	‘77,	Yanagida	‘79,		
Mohapatra	&	Senjanovic	‘80

とすると

⇒



くりこみに対する安定性
Four-zero	textureとreflection	sym.は量子補正をほと
んど受けない Fritzsch	&	Xing,	PLB	413,	’97	

Xing	&	Zhao,	NPB	897,	‘15

第１世代	 が小さい	⇒	the	textureとthe	sym.は独立に安定	Cu,d ∼ mu,dmc,s



くりこみに対する安定性
Four-zero	textureとreflection	sym.は量子補正をほと
んど受けない

第１世代	 が小さい	⇒	the	textureとthe	sym.は独立に安定	Cu,d ∼ mu,dmc,s

Fritzsch	&	Xing,	PLB	413,	’97	
Xing	&	Zhao,	NPB	897,	‘15



くりこみに対する安定性
Four-zero	textureとreflection	sym.は量子補正をほと
んど受けない

第１世代	 が小さい	⇒	the	textureとthe	sym.は独立に安定	

⇒ 高エネルギー(GUT scale)のflavorやCPを受け継いでいる
Cu,d ∼ mu,dmc,s

Fritzsch	&	Xing,	PLB	413,	’97	
Xing	&	Zhao,	NPB	897,	‘15



UV	theory?

これらは別々に破れたresidual	symmetries

UV	theory	with	the	only	GCP	sym.

GCP, ψ′
i = UijCψ

∗
j (t,−x) , m′

ψ = ULm
∗
ψU

†
R , (15)

FZ表示

VCKM "





1

√
mu

mc
0

−
√

mu

mc
1 0

0 0 1








−i 0 0

0 cq sq
0 −sq cq









1 −
√

md

ms
0

√
md

ms
1 0

0 0 1




,

(16)

MNS

U "





1
√

me

mµ
0

−
√

me

mµ
1 0

0 0 1








−i 0 0

0 c23 s23
0 −s23 c23








c13 0 s13
0 1 0

−s13 0 c13








c12 s12 0

−s12 c12 0

0 0 1



 .

(17)

mf " Φ∗
fR

−1
f mdiag

f RfΦ,

Rf =




cf1 sf1 0

−sf1 cf1 0

0 0 1








1 0 0

0 cf2 sf2
0 −sf2 cf2



 . (18)

〈θu〉 = iVu 〈θd〉 = Vd

0.1.1 2009 本田くんにラグランジアン

L = y1hēLeR + y2ν̄Lν
c
Lφ+B2hφ+ h.c, , (19)

→ gWµēRγ
µνcL + h.c, , (20)

0.2 2009 学会用

TmfT = mf , T =




1 0 0

0 0 1

0 1 0



 Tm∗
fT = mf , (21)

3
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3

Spontaneous	CPV

flavored	CPV	(もしくはSCPV)が、第１世代のみ特別扱い	
第１世代の質量を禁止するカイラル対称性の破れに付随？？

G-J Ding, S. F. King, A. J. Stuart
JHEP 1013) 006, ArXiv 1307.4212.
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md

ms
1 0

0 0 1




,

(16)

MNS

U "





1
√

me

mµ
0

−
√

me

mµ
1 0

0 0 1








−i 0 0

0 c23 s23
0 −s23 c23








c13 0 s13
0 1 0

−s13 0 c13








c12 s12 0

−s12 c12 0

0 0 1



 .

(17)

mf " Φ∗
fR

−1
f mdiag

f RfΦ,

Rf =




cf1 sf1 0

−sf1 cf1 0

0 0 1








1 0 0

0 cf2 sf2
0 −sf2 cf2



 . (18)

〈θu〉 = iVu 〈θd〉 = Vd

0.1.1 2009 本田くんにラグランジアン

L = y1hēLeR + y2ν̄Lν
c
Lφ+B2hφ+ h.c, , (19)

→ gWµēRγ
µνcL + h.c, , (20)

0.2 2009 学会用

TmfT = mf , T =




1 0 0

0 0 1

0 1 0



 Tm∗
fT = mf , (21)

3

Spontaneous	CPV

flavored	CPV	(もしくはSCPV)が、第１世代のみ特別扱い	
第１世代の質量を禁止するカイラル対称性の破れに付随？？

G-J Ding, S. F. King, A. J. Stuart
JHEP 1013) 006, ArXiv 1307.4212.

⇒	U(1)PQ	symmetry?



Realization	of	reflection	symmetries
Model	:	2HDM	+	2	flavons	θu,d	+	Z2NFC × U(1)PQ × GCP
• Z2NFC	:	FCNCを禁止	+	ポテンシャルを制限	

• U(1)PQ : 第１世代の質量を禁止 +  = 0 
• GCP : 湯川の複素位相を制御

θ̄

SU(2)L U(1)Y ZNFC
2 U(1)PQ CP

qLi 2 1/6 1 −1, 0, 0 1
uRi 1 2/3 1 1, 0, 0 1
dRi 1 −1/3 −1 1, 0, 0 1
lLi 2 −1/2 1 −1, 0, 0 1
νRi 1 0 1 1, 0, 0 1
eRi 1 −1 −1 1, 0, 0 1
Hu 2 −1/2 1 0 1
Hd 2 1/2 −1 0 1
θu 1 1 1 −1 +i
θd 1 1 −1 −1 −i

Table 1: The charge assignments of the SM fermions and scalar fields under the gauge and the
flavor symmetries.

Under these discrete symmetries, the most general Lagrangian is written by

−L = q̄L(Ỹ
0
u +

θu
Λ
Ỹ 1
u +

θ2u
Λ2

Ỹ 2
u +

θ2d
Λ2

Ỹ ′
u
2)uRHu (26)

+ q̄L(Ỹ
0
d +

θd
Λ
Ỹ 1
d +

θuθd
Λ2

Ỹ 2
d )dRHd + h.c. , (27)

where Λ is a cut-off scale. Analogous formula holds in the lepton sector. The Yukawa matrices
are parameterized as

Ỹ 0
u,d =




0 0 0
0 d̃u,d c̃u,d
0 b̃u,d ãu,d



 , Ỹ 1
u,d =




0 ẽu,d f̃u,d

g̃u,d 0 0
h̃u,d 0 0



 , (28)

and Ỹ 2
f have only the 11 matrix element. Similar to consistency conditions of general parity (or

CP ) and flavor symmetry [80,81], these Yukawa matrices satisfy a condition

(Ỹ 0
u,d)ij (Ỹ

1
u,d)ij = 0 (no sum). (29)

The generalized CP invariance

θ∗u = +iθu, θ∗d = −iθd, φ∗ = φ for other fields (30)

restricts relative complex phases of the matrix elements as

(Ỹ 0
u,d)

∗ = Ỹ 0
u,d, Ỹ 1

u = eiπ/4|Ỹ 1
u |, Ỹ 1

d = e−iπ/4|Ỹ 1
d |. (31)

Next, we investigate transformation properties of the Higgs potential. The potential can be
written as

V = V 1(Hu, Hd) + V 2(Hu,d, θu,d) + V 3(θu, θd). (32)

V 1 is obviously real because the GCP is canonical CP for the Higgs doublets Hu,d. Among
bi-linear terms made from θu and θd, only θ∗uθu and θ∗dθd are invariant under U(1)PQ × ZNFC

2
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θu,dと第１世代のみ	
U(1)PQ	chargeを持つ

θu,dのみ	
GCP	chargeを持つ

θu,dのvevで	
U(1)PQ	とGCPが破れる

類似の模型がK. Kang and M. Shin, 
Phys. Rev. D 33, 2688 (1986). 



1.	flavored	U(1)PQ

Y.	Ema,	K.	Hamaguchi,	T.	Moroi,	and	K.	Nakayama,	JHEP	01,	096	(2017),		

L.	Calibbi,	F.	Goertz,	D.	Redigolo,	R.	Ziegler,	and	J.	Zupan,	Phys.	Rev.	D	95,	095009	(2017).	

In this case, by the following equivalent transformation

Rq,u ≡ Pq,uRPq,u =




−e2iφq,u 0 0

0 1 0
0 0 1



 , Rd ≡ Pd13Pd =




+e2iφd 0 0

0 1 0
0 0 1



 , (21)

deforms the reflection symmetries (14) as

R†
qm̃

∗
uRu = m̃u, R†

qm̃
∗
dRd = m̃d. (22)

In this basis, the Hermiticity of the quark masses is lost, as shown in Eqs. (19) and (20). The
symmetries Eq. (6), Eq. (14), and Eq. (22) are all equivalent under redefinitions of fermion fields.

3 Realization of the symmetries

The µ− τ reflection symmetry is often realized by a remnant of a larger flavor symmetry, such
as A4, Z2 × Z2, U(1)Lµ−Lτ , and so on [56–78]. The origin of four-zero texture is also discussed
in S3L×S3R model [117–120]. Then, in this section, we concentrate on a realization of reflection
symmetries. Since Eq. (6) or Eq. (14) imposes two independent GCP, underlying CP should be
broken separately in the up- and down-sector [88].

To this end, the following U(1)PQ × Z2 flavor symmetry and a GCP symmetry are imposed
on the 2HDM. A similar model-building and its UV completion can be found in [121].

• ZNFC
2 : It realizes the natural flavor conservation (NFC) [122] and prohibits flavor changing

neutral currents (FCNCs) by two Higgs doublets.

• U(1)PQ : A chiral (PQ) symmetry [100] that prohibits the mass of the first generations1.
It is a kind of flavored PQ symmetry [123,124].

• CP : A generalized CP symmetry that restricts phases of Yukawa couplings. As an
alternative way, the driving field method [125] is utilized to generate relative phases.

Two flavon fields θu,d are introduced to the 2HDM. These SM singlet flavons have nontrivial
charges under U(1)PQ and CP symmetry. Simultaneous breaking of these symmetries by vevs
of θu,d provokes CPV only for the first generations. The charge assignment of fields is presented
in Table 1.

Under the U(1)PQ symmetry, only the first-generations have nontrivial charges as

q1L → e−iαq1L, u1R → eiαu1R, d1R → eiαd1R, (23)

l1L → e−iαl1L, ν1R → eiαν1R, e1R → eiαe1R. (24)

The bilinear terms q̄LiuRj , q̄LidRj , l̄LiνRj and, l̄LieRj (associated with Yukawa interactions) are
transformed under U(1)PQ as




e2iα eiα eiα

eiα 1 1
eiα 1 1



 . (25)

1A discrete symmetry larger than Z3 is also a possible choice.
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• U(1)PQ : A chiral (PQ) symmetry [100] that prohibits the mass of the first generations1.
It is a kind of flavored PQ symmetry [123,124].
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of θu,d provokes CPV only for the first generations. The charge assignment of fields is presented
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Under the U(1)PQ symmetry, only the first-generations have nontrivial charges as

q1L → e−iαq1L, u1R → eiαu1R, d1R → eiαd1R, (23)
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
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1A discrete symmetry larger than Z3 is also a possible choice.
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湯川行列の電荷

F.	Wilczek,	Phys.Rev.Le}.	49,	1549	(1982),	
A.	Davidson	and	K.	C.	Wali,	Phys.	Rev.	Le}.	48,	11	(1982),	
Y.	Ahn,	Phys.Rev.D	91,	056005	(2015).

SU(2)L U(1)Y ZNFC
2 U(1)PQ CP

qLi 2 1/6 1 −1, 0, 0 1
uRi 1 2/3 1 1, 0, 0 1
dRi 1 −1/3 −1 1, 0, 0 1
lLi 2 −1/2 1 −1, 0, 0 1
νRi 1 0 1 1, 0, 0 1
eRi 1 −1 −1 1, 0, 0 1
Hu 2 −1/2 1 0 1
Hd 2 1/2 −1 0 1
θu 1 1 1 −1 +i
θd 1 1 −1 −1 −i

Table 1: The charge assignments of the SM fermions and scalar fields under the gauge and the
flavor symmetries.

Under these discrete symmetries, the most general Yukawa interactions are written by

−L " q̄L(Ỹ
0
u +

θu
Λ
Ỹ 1
u +

θ2u
Λ2

Ỹ 2
u +

θ2d
Λ2

Ỹ ′
u
2)uRHu (26)

+ q̄L(Ỹ
0
d +

θd
Λ
Ỹ 1
d +

θuθd
Λ2

Ỹ 2
d )dRHd + h.c. , (27)

where Λ is a cut-off scale. Analogous formula holds in the lepton sector. The Yukawa matrices
are parameterized as

Ỹ 0
u,d =




0 0 0
0 d̃u,d c̃u,d
0 b̃u,d ãu,d



 , Ỹ 1
u,d =




0 ẽu,d f̃u,d

g̃u,d 0 0
h̃u,d 0 0



 , (28)

and Ỹ 2
f have only the 11 matrix element. Similar to consistency conditions of general parity (or

CP ) and flavor symmetry [80,81], these Yukawa matrices satisfy a condition

(Ỹ 0
u,d)ij (Ỹ

1
u,d)ij = 0 (no sum). (29)

The generalized CP invariance

θ∗u = +iθu, θ∗d = −iθd, φ∗ = φ for other fields (30)

restricts relative complex phases of the matrix elements as

(Ỹ 0
u,d)

∗ = Ỹ 0
u,d, Ỹ 1

u = eiπ/4|Ỹ 1
u |, Ỹ 1

d = e−iπ/4|Ỹ 1
d |. (31)

Next, we investigate transformation properties of the Higgs potential. The potential can be
written as

V = V 1(Hu, Hd) + V 2(Hu,d, θu,d) + V 3(θu, θd). (32)

V 1 is obviously real because the GCP is canonical CP for the Higgs doublets Hu,d. Among
bi-linear terms made from θu and θd, only θ∗uθu and θ∗dθd are invariant under U(1)PQ × ZNFC
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and Ỹ 2
f have only the 11 matrix element. Similar to consistency conditions of general parity (or

CP ) and flavor symmetry [80,81], these Yukawa matrices satisfy a condition

(Ỹ 0
u,d)ij (Ỹ

1
u,d)ij = 0 (no sum). (29)

The generalized CP invariance

θ∗u = +iθu, θ∗d = −iθd, φ∗ = φ for other fields (30)
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Next, we investigate transformation properties of the Higgs potential. The potential can be
written as

V = V 1(Hu, Hd) + V 2(Hu,d, θu,d) + V 3(θu, θd). (32)

V 1 is obviously real because the GCP is canonical CP for the Higgs doublets Hu,d. Among
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最も一般的な	
湯川相互作用

flavored	axion	(flaxion	or	axiflavon)	の一種



2.	Generalized	CP

θu,dのみGCP	chargeを持つ

SU(2)L U(1)Y ZNFC
2 U(1)PQ CP

qLi 2 1/6 1 −1, 0, 0 1
uRi 1 2/3 1 1, 0, 0 1
dRi 1 −1/3 −1 1, 0, 0 1
lLi 2 −1/2 1 −1, 0, 0 1
νRi 1 0 1 1, 0, 0 1
eRi 1 −1 −1 1, 0, 0 1
Hu 2 −1/2 1 0 1
Hd 2 1/2 −1 0 1
θu 1 1 1 −1 +i
θd 1 1 −1 −1 −i

Table 1: The charge assignments of the SM fermions and scalar fields under the gauge and the
flavor symmetries.

Under these discrete symmetries, the most general Yukawa interactions are written by

−L " q̄L(Ỹ
0
u +

θu
Λ
Ỹ 1
u +

θ2u
Λ2

Ỹ 2
u +

θ2d
Λ2

Ỹ ′
u
2)uRHu (26)

+ q̄L(Ỹ
0
d +

θd
Λ
Ỹ 1
d +

θuθd
Λ2

Ỹ 2
d )dRHd + h.c. , (27)

where Λ is a cut-off scale. Analogous formula holds in the lepton sector. The Yukawa matrices
are parameterized as

Ỹ 0
u,d =




0 0 0
0 d̃u,d c̃u,d
0 b̃u,d ãu,d



 , Ỹ 1
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0 ẽu,d f̃u,d

g̃u,d 0 0
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and Ỹ 2
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1
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(Ỹ 0
u,d)

∗ = Ỹ 0
u,d, Ỹ 1

u = eiπ/4|Ỹ 1
u |, Ỹ 1

d = e−iπ/4|Ỹ 1
d |. (31)

Next, we investigate transformation properties of the Higgs potential. The potential can be
written as

V = V 1(Hu, Hd) + V 2(Hu,d, θu,d) + V 3(θu, θd). (32)

V 1 is obviously real because the GCP is canonical CP for the Higgs doublets Hu,d. Among
bi-linear terms made from θu and θd, only θ∗uθu and θ∗dθd are invariant under U(1)PQ × ZNFC
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f have only the 11 matrix element. Similar to consistency conditions of general parity (or
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(Ỹ 0
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(Ỹ 0
u,d)

∗ = Ỹ 0
u,d, Ỹ 1

u = eiπ/4|Ỹ 1
u |, Ỹ 1
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d |. (31)

Next, we investigate transformation properties of the Higgs potential. The potential can be
written as

V = V 1(Hu, Hd) + V 2(Hu,d, θu,d) + V 3(θu, θd). (32)

V 1 is obviously real because the GCP is canonical CP for the Higgs doublets Hu,d. Among
bi-linear terms made from θu and θd, only θ∗uθu and θ∗dθd are invariant under U(1)PQ × ZNFC
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⇒	この基底において、CP位相は湯川の第１世代のみに集中
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f have only the 11 matrix element. Similar to consistency conditions of general parity (or

CP ) and flavor symmetry [80,81], these Yukawa matrices satisfy a condition

(Ỹ 0
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Next, we investigate transformation properties of the Higgs potential. The potential can be
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V 1 is obviously real because the GCP is canonical CP for the Higgs doublets Hu,d. Among
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Table 1: The charge assignments of the SM fermions and scalar fields under the gauge and the
flavor symmetries.

Under these discrete symmetries, the most general Yukawa interactions are written by

−L " q̄L(Ỹ
0
u +

θu
Λ
Ỹ 1
u +

θ2u
Λ2

Ỹ 2
u +

θ2d
Λ2

Ỹ ′
u
2)uRHu (26)

+ q̄L(Ỹ
0
d +

θd
Λ
Ỹ 1
d +

θuθd
Λ2

Ỹ 2
d )dRHd + h.c. , (27)

where Λ is a cut-off scale. Analogous formula holds in the lepton sector. The Yukawa matrices
are parameterized as

Ỹ 0
u,d =




0 0 0
0 d̃u,d c̃u,d
0 b̃u,d ãu,d



 , Ỹ 1
u,d =




0 ẽu,d f̃u,d

g̃u,d 0 0
h̃u,d 0 0



 , (28)

and Ỹ 2
f have only the 11 matrix element. Similar to consistency conditions of general parity (or

CP ) and flavor symmetry [80,81], these Yukawa matrices satisfy a condition

(Ỹ 0
u,d)ij (Ỹ

1
u,d)ij = 0 (no sum). (29)

The generalized CP invariance

θ∗u = +iθu, θ∗d = −iθd, φ∗ = φ for other fields (30)

restricts relative complex phases of the matrix elements as

(Ỹ 0
u,d)

∗ = Ỹ 0
u,d, Ỹ 1

u = eiπ/4|Ỹ 1
u |, Ỹ 1

d = e−iπ/4|Ỹ 1
d |. (31)

Next, we investigate transformation properties of the Higgs potential. The potential can be
written as

V = V 1(Hu, Hd) + V 2(Hu,d, θu,d) + V 3(θu, θd). (32)

V 1 is obviously real because the GCP is canonical CP for the Higgs doublets Hu,d. Among
bi-linear terms made from θu and θd, only θ∗uθu and θ∗dθd are invariant under U(1)PQ × ZNFC

2

6

ポテンシャルはZ2とU(1)PQで実(GCP	inv.)なものしか許されない

θu,dの真空期待値（実で位相なし）でGCPとU(1)PQが破れる
（４次項の具体例：		　　　　　　　　）

(Both of θ∗uθd and its complex conjugate θ∗dθu has charge −1 under ZNFC
2 and −1 under CP ).

Then V2 has only real terms because θ∗uθu and θ∗dθd have trivial CP charges. Finally, quartic
terms made from the flavons should be a combination between {|θu|2, |θ2d|} or {θ∗uθd, θ∗dθu}, such
as |θu|2|θ2d| or θ∗uθdθ∗uθd. Since these terms have trivial charges under CP , V3 is a GCP invariant
and then the whole Higgs potential is invariant under CP . Therefore, in this basis, CP phases
are localized only in the first generations of Yukawa matrices. Real vevs of the flavon fields
〈θu,d〉 provokes a spontaneous symmetry breaking (SSB) of U(1)PQ, ZNFC

2 , and CP .
As a result, the vevs 〈θu,d〉 produces the following textures

Yu,d = (Ỹ 0
u,d +

〈θu,d〉
Λ

Ỹ 1
u,d) =





O(
〈θu,d〉2
Λ2 ) ẽ

〈θu,d〉
Λ eiϕu,d f̃

〈θu,d〉
Λ eiϕu,d

g̃
〈θu,d〉
Λ eiϕu,d d̃u,d c̃u,d

h̃
〈θu,d〉
Λ eiϕu,d b̃u,d ãu,d



 , (33)

where

ϕu = +π/4, ϕd = −π/4. (34)

These vevs can be estimated from the best fit values for Yu,d (16) and (17) as

〈θu〉
Λ

|Ỹ 1
u | $

√
2mumc

v sinβ
$ 3× 10−4

sinβ
, (35)

〈θd〉
Λ

|Ỹ 1
d | $

√
2mdms

v cosβ
$ 1× 10−4

cosβ
, (36)

where 〈H0
u〉 ≡ v sinβ/

√
2, 〈H0

d〉 ≡ v cosβ/
√
2 with 〈H0

u〉2 + 〈H0
d〉2 = v2/2. The small 11 matrix

elements in Eq. (33) are generated from Ỹ 2
f . They are negligible compared to Yukawa eigenvalues

of the first generation quarks:

〈θu,d〉2

Λ2
! 10−8 ( (yu, yd) $ (

mu

v sinβ
,

md

v cosβ
) $ (10−5, 10−5 tanβ). (37)

Therefore, Eq. (33) and (34) satisfy the reflection symmetries (22) with φu = 3π/4, φq = −φd =
π/4 and (mf )11 $ 0.

In this construction, Eqs. (16) and (17) stand for Ỹ 0
u $ Ỹ 0

d and Ỹ 1
u ∼ Ỹ 1

d . It indicates
an existence of u − d unification, such as the left-right symmetric model. Moreover, with a
u − d unified relation Ỹ 1

u = Ỹ 1
d (in the other basis of CP phases), simultaneous rotation of 2-3

generations by an orthogonal matrix O23 can realize zero textures

(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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振り子の法則
世界は n次元フーリエモード

f(x) =

∫
dnk

(2π)n
f(k) eikx (1)

k = 0を選択したときのみ、世界から白黒を取り除く事が出来る！！
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Parity対称性

L ! ψ̄LiYfijΦψRj + ψ̄RiY
†
fijΦ

∗ψLj , (2)

P :ψL ↔ ψR, Φ∗ ↔ Φ ⇒ Yf = Y †
f (3)

(mν)11 = (mν)13 = 0 ⇒

$ 2.5 [meV], (α2,α3) = (π, 0). (4)

$ −6.2 [meV], (α2,α3) = (0, 0). (5)

|mee| =
∣∣∣∣

3∑

i=1

miU
2
ei

∣∣∣∣ $ 1.24 [meV] (α2,α3) = (π, 0) (6)

$ 0.17 [meV] (α2,α3) = (0, 0). (7)

ZNFC
2 U(1)PQ CP

Hu 1 0 1

Hd −1 0 1

θu 1 −1 +i

θd −1 −1 −i

表 1: The charge assignments of the SM fermions and scalar fields under

the gauge and the flavor symmetries.

0.2 2010 北大セミナー
sin θ23 = 0.0405, sin θ13 = 0.00361, sin θ12 = 0.2265 (8)
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結果

(Both of θ∗uθd and its complex conjugate θ∗dθu has charge −1 under ZNFC
2 and −1 under CP ).
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as |θu|2|θ2d| or θ∗uθdθ∗uθd. Since these terms have trivial charges under CP , V3 is a GCP invariant
and then the whole Higgs potential is invariant under CP . Therefore, in this basis, CP phases
are localized only in the first generations of Yukawa matrices. Real vevs of the flavon fields
〈θu,d〉 provokes a spontaneous symmetry breaking (SSB) of U(1)PQ, ZNFC

2 , and CP .
As a result, the vevs 〈θu,d〉 produces the following textures
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u,d +
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Ỹ 1
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



O(
〈θu,d〉2
Λ2 ) ẽ
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Λ eiϕu,d f̃

〈θu,d〉
Λ eiϕu,d

g̃
〈θu,d〉
Λ eiϕu,d d̃u,d c̃u,d

h̃
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Λ eiϕu,d b̃u,d ãu,d



 , (33)

where

ϕu = +π/4, ϕd = −π/4. (34)

These vevs can be estimated from the best fit values for Yu,d (16) and (17) as
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|Ỹ 1
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v sinβ
$ 3× 10−4

sinβ
, (35)

〈θd〉
Λ

|Ỹ 1
d | $

√
2mdms

v cosβ
$ 1× 10−4

cosβ
, (36)

where 〈H0
u〉 ≡ v sinβ/

√
2, 〈H0

d〉 ≡ v cosβ/
√
2 with 〈H0

u〉2 + 〈H0
d〉2 = v2/2. The small 11 matrix

elements in Eq. (33) are generated from Ỹ 2
f . They are negligible compared to Yukawa eigenvalues

of the first generation quarks:

〈θu,d〉2

Λ2
! 10−8 ( (yu, yd) $ (

mu

v sinβ
,

md

v cosβ
) $ (10−5, 10−5 tanβ). (37)

Therefore, Eq. (33) and (34) satisfy the reflection symmetries (22) with φu = 3π/4, φq = −φd =
π/4 and (mf )11 $ 0.

In this construction, Eqs. (16) and (17) stand for Ỹ 0
u $ Ỹ 0

d and Ỹ 1
u ∼ Ỹ 1

d . It indicates
an existence of u − d unification, such as the left-right symmetric model. Moreover, with a
u − d unified relation Ỹ 1

u = Ỹ 1
d (in the other basis of CP phases), simultaneous rotation of 2-3

generations by an orthogonal matrix O23 can realize zero textures

(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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where

ϕu = +π/4, ϕd = −π/4. (34)

These vevs can be estimated from the best fit values for Yu,d (16) and (17) as

〈θu〉
Λ

|Ỹ 1
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elements in Eq. (33) are generated from Ỹ 2
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! 10−8 ( (yu, yd) $ (
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v cosβ
) $ (10−5, 10−5 tanβ). (37)

Therefore, Eq. (33) and (34) satisfy the reflection symmetries (22) with φu = 3π/4, φq = −φd =
π/4 and (mf )11 $ 0.

In this construction, Eqs. (16) and (17) stand for Ỹ 0
u $ Ỹ 0

d and Ỹ 1
u ∼ Ỹ 1

d . It indicates
an existence of u − d unification, such as the left-right symmetric model. Moreover, with a
u − d unified relation Ỹ 1

u = Ỹ 1
d (in the other basis of CP phases), simultaneous rotation of 2-3

generations by an orthogonal matrix O23 can realize zero textures

(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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Λ eiϕu,d f̃
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Λ eiϕu,d

g̃
〈θu,d〉
Λ eiϕu,d d̃u,d c̃u,d

h̃
〈θu,d〉
Λ eiϕu,d b̃u,d ãu,d



 , (33)

where

ϕu = +π/4, ϕd = −π/4. (34)

These vevs can be estimated from the best fit values for Yu,d (16) and (17) as

〈θu〉
Λ

|Ỹ 1
u | $

√
2mumc

v sinβ
$ 3× 10−4

sinβ
, (35)

〈θd〉
Λ

|Ỹ 1
d | $

√
2mdms

v cosβ
$ 1× 10−4

cosβ
, (36)

where 〈H0
u〉 ≡ v sinβ/

√
2, 〈H0

d〉 ≡ v cosβ/
√
2 with 〈H0

u〉2 + 〈H0
d〉2 = v2/2. The small 11 matrix

elements in Eq. (33) are generated from Ỹ 2
f . They are negligible compared to Yukawa eigenvalues

of the first generation quarks:

〈θu,d〉2

Λ2
! 10−8 ( (yu, yd) $ (

mu

v sinβ
,

md

v cosβ
) $ (10−5, 10−5 tanβ). (37)

Therefore, Eq. (33) and (34) satisfy the reflection symmetries (22) with φu = 3π/4, φq = −φd =
π/4 and (mf )11 $ 0.

In this construction, Eqs. (16) and (17) stand for Ỹ 0
u $ Ỹ 0

d and Ỹ 1
u ∼ Ỹ 1

d . It indicates
an existence of u − d unification, such as the left-right symmetric model. Moreover, with a
u − d unified relation Ỹ 1

u = Ỹ 1
d (in the other basis of CP phases), simultaneous rotation of 2-3

generations by an orthogonal matrix O23 can realize zero textures

(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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quark質量行列のbest	fitから、

V 1 is obviously real because the GCP is the canonical CP for the Higgs doublets Hu,d. Among
bi-linear terms made from θu and θd, only θ∗uθu and θ∗dθd are invariant under U(1)PQ × ZNFC

2

(Both of θ∗uθd and its complex conjugate θ∗dθu has charge −1 under ZNFC
2 and −1 under CP ).

Then V2 has only real terms because θ∗uθu and θ∗dθd have trivial CP charges. Finally, quartic
terms made from the flavons should be a combination between {|θu|2, |θ2d|} or {θ∗uθd, θ∗dθu}, such
as |θu|2|θ2d| or θ∗uθdθ∗uθd. Since these terms have trivial charges under CP , V3 is a GCP invariant
and then the whole Higgs potential V is invariant under CP . Therefore, in this basis, CP phases
are localized only in the first generations of Yukawa matrices. Real vevs of the flavon fields 〈θu,d〉
provokes a spontaneous symmetry breaking (SSB) of U(1)PQ, ZNFC

2 , and CP .
As a result, the vevs 〈θu,d〉 produce the following textures

Yu,d = (Ỹ 0
u,d +

〈θu,d〉
Λ

Ỹ 1
u,d) =





O(
〈θu,d〉2
Λ2 ) ẽ

〈θu,d〉
Λ eiϕu,d f̃

〈θu,d〉
Λ eiϕu,d

g̃
〈θu,d〉
Λ eiϕu,d d̃u,d c̃u,d

h̃
〈θu,d〉
Λ eiϕu,d b̃u,d ãu,d



 , (33)

where

ϕu = +π/4, ϕd = −π/4. (34)

These vevs can be estimated from the best fit values for Yu,d (16) and (17) as

〈θu〉
Λ

|Ỹ 1
u | %

√
2mumc

v sinβ
% 3× 10−4

sinβ
, (35)

〈θd〉
Λ

|Ỹ 1
d | %

√
2mdms

v cosβ
% 1× 10−4

cosβ
, (36)

where 〈H0
u〉 ≡ v sinβ/

√
2, 〈H0

d〉 ≡ v cosβ/
√
2 with 〈H0

u〉2 + 〈H0
d〉2 = v2/2. The small 11 matrix

elements in Eq. (33) are generated from Ỹ 2
f . In many cases, they are negligible compared to

Yukawa eigenvalues of the first generations:

〈θu,d〉2

Λ2
% 10−8(× tan2 β)

|Ỹ 1
u,d|2

! (yu, yd) % (
mu

v sinβ
,

md

v cosβ
) % (10−5, 10−5 tanβ). (37)

Therefore, Eq. (33) and (34) satisfy the reflection symmetries (22) with φu = 3π/4, φq = −φd =
π/4 and (mf )11 % 0.

In this construction, Eqs. (16) and (17) stand for Ỹ 0
u % Ỹ 0

d and Ỹ 1
u ∼ Ỹ 1

d . It indicates
an existence of u − d unification, such as the left-right symmetric model. Moreover, with a
u − d unified relation Ỹ 1

u = Ỹ 1
d (in the other basis of CP phases), simultaneous rotation of 2-3

generations by a real orthogonal matrix O23 can realize zero textures

(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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11成分は十分小さい	→	reflection	symmetriesと(mf)11	=	0をみたす
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
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where

ϕu = +π/4, ϕd = −π/4. (34)

These vevs can be estimated from the best fit values for Yu,d (16) and (17) as
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d and Ỹ 1
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d . It indicates
an existence of u − d unification, such as the left-right symmetric model. Moreover, with a
u − d unified relation Ỹ 1

u = Ỹ 1
d (in the other basis of CP phases), simultaneous rotation of 2-3

generations by an orthogonal matrix O23 can realize zero textures

(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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（さらに、（別のCPの基底で） 	であれば(mf)13	=	0もみたす）Ỹ1
u = Ỹ1

d
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∣∣∣∣ $ 1.24 [meV] (α2,α3) = (π, 0) (6)

$ 0.17 [meV] (α2,α3) = (0, 0). (7)

ZNFC
2 U(1)PQ CP

Hu 1 0 1

Hd −1 0 1

θu 1 −1 +i

θd −1 −1 −i

表 1: The charge assignments of the SM fermions and scalar fields under

the gauge and the flavor symmetries.
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strong CP

10−10 ! θ̄ = θQCD + θQFD(≡ ArgDet[mumd]), (9)
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q,u,dの	

位相変換



結果

(Both of θ∗uθd and its complex conjugate θ∗dθu has charge −1 under ZNFC
2 and −1 under CP ).

Then V2 has only real terms because θ∗uθu and θ∗dθd have trivial CP charges. Finally, quartic
terms made from the flavons should be a combination between {|θu|2, |θ2d|} or {θ∗uθd, θ∗dθu}, such
as |θu|2|θ2d| or θ∗uθdθ∗uθd. Since these terms have trivial charges under CP , V3 is a GCP invariant
and then the whole Higgs potential is invariant under CP . Therefore, in this basis, CP phases
are localized only in the first generations of Yukawa matrices. Real vevs of the flavon fields
〈θu,d〉 provokes a spontaneous symmetry breaking (SSB) of U(1)PQ, ZNFC

2 , and CP .
As a result, the vevs 〈θu,d〉 produces the following textures

Yu,d = (Ỹ 0
u,d +

〈θu,d〉
Λ

Ỹ 1
u,d) =





O(
〈θu,d〉2
Λ2 ) ẽ

〈θu,d〉
Λ eiϕu,d f̃

〈θu,d〉
Λ eiϕu,d

g̃
〈θu,d〉
Λ eiϕu,d d̃u,d c̃u,d

h̃
〈θu,d〉
Λ eiϕu,d b̃u,d ãu,d



 , (33)

where

ϕu = +π/4, ϕd = −π/4. (34)

These vevs can be estimated from the best fit values for Yu,d (16) and (17) as

〈θu〉
Λ

|Ỹ 1
u | $

√
2mumc

v sinβ
$ 3× 10−4

sinβ
, (35)

〈θd〉
Λ

|Ỹ 1
d | $

√
2mdms

v cosβ
$ 1× 10−4

cosβ
, (36)

where 〈H0
u〉 ≡ v sinβ/

√
2, 〈H0

d〉 ≡ v cosβ/
√
2 with 〈H0

u〉2 + 〈H0
d〉2 = v2/2. The small 11 matrix

elements in Eq. (33) are generated from Ỹ 2
f . They are negligible compared to Yukawa eigenvalues

of the first generation quarks:

〈θu,d〉2

Λ2
! 10−8 ( (yu, yd) $ (

mu

v sinβ
,

md

v cosβ
) $ (10−5, 10−5 tanβ). (37)

Therefore, Eq. (33) and (34) satisfy the reflection symmetries (22) with φu = 3π/4, φq = −φd =
π/4 and (mf )11 $ 0.

In this construction, Eqs. (16) and (17) stand for Ỹ 0
u $ Ỹ 0

d and Ỹ 1
u ∼ Ỹ 1

d . It indicates
an existence of u − d unification, such as the left-right symmetric model. Moreover, with a
u − d unified relation Ỹ 1

u = Ỹ 1
d (in the other basis of CP phases), simultaneous rotation of 2-3

generations by an orthogonal matrix O23 can realize zero textures

(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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|Ỹ 1
d | $

√
2mdms

v cosβ
$ 1× 10−4

cosβ
, (36)

where 〈H0
u〉 ≡ v sinβ/

√
2, 〈H0

d〉 ≡ v cosβ/
√
2 with 〈H0

u〉2 + 〈H0
d〉2 = v2/2. The small 11 matrix

elements in Eq. (33) are generated from Ỹ 2
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振り子の法則
世界は n次元フーリエモード

f(x) =

∫
dnk

(2π)n
f(k) eikx (1)

k = 0を選択したときのみ、世界から白黒を取り除く事が出来る！！
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†
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2 U(1)PQ CP
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Hd −1 0 1

θu 1 −1 +i

θd −1 −1 −i

表 1: The charge assignments of the SM fermions and scalar fields under

the gauge and the flavor symmetries.
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strong CP

10−10 ! θ̄ = θQCD + θQFD(≡ ArgDet[mumd]), (9)
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q,u,dの	

位相変換
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π/4 and (mf )11 $ 0.

In this construction, Eqs. (16) and (17) stand for Ỹ 0
u $ Ỹ 0

d and Ỹ 1
u ∼ Ỹ 1

d . It indicates
an existence of u − d unification, such as the left-right symmetric model. Moreover, with a
u − d unified relation Ỹ 1

u = Ỹ 1
d (in the other basis of CP phases), simultaneous rotation of 2-3

generations by an orthogonal matrix O23 can realize zero textures

(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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〈θu,d〉 provokes a spontaneous symmetry breaking (SSB) of U(1)PQ, ZNFC

2 , and CP .
As a result, the vevs 〈θu,d〉 produces the following textures

Yu,d = (Ỹ 0
u,d +

〈θu,d〉
Λ

Ỹ 1
u,d) =





O(
〈θu,d〉2
Λ2 ) ẽ

〈θu,d〉
Λ eiϕu,d f̃

〈θu,d〉
Λ eiϕu,d

g̃
〈θu,d〉
Λ eiϕu,d d̃u,d c̃u,d

h̃
〈θu,d〉
Λ eiϕu,d b̃u,d ãu,d



 , (33)

where

ϕu = +π/4, ϕd = −π/4. (34)

These vevs can be estimated from the best fit values for Yu,d (16) and (17) as

〈θu〉
Λ

|Ỹ 1
u | $

√
2mumc

v sinβ
$ 3× 10−4

sinβ
, (35)

〈θd〉
Λ

|Ỹ 1
d | $

√
2mdms

v cosβ
$ 1× 10−4

cosβ
, (36)

where 〈H0
u〉 ≡ v sinβ/

√
2, 〈H0

d〉 ≡ v cosβ/
√
2 with 〈H0

u〉2 + 〈H0
d〉2 = v2/2. The small 11 matrix

elements in Eq. (33) are generated from Ỹ 2
f . They are negligible compared to Yukawa eigenvalues
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mu
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u − d unified relation Ỹ 1
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(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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|Ỹ 1
u | $

√
2mumc

v sinβ
$ 3× 10−4

sinβ
, (35)

〈θd〉
Λ

|Ỹ 1
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u = Ỹ 1
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(2π)n
f(k) eikx (1)

k = 0を選択したときのみ、世界から白黒を取り除く事が出来る！！
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Parity対称性

L ! ψ̄LiYfijΦψRj + ψ̄RiY
†
fijΦ

∗ψLj , (2)

P :ψL ↔ ψR, Φ∗ ↔ Φ ⇒ Yf = Y †
f (3)

(mν)11 = (mν)13 = 0 ⇒

$ 2.5 [meV], (α2,α3) = (π, 0). (4)

$ −6.2 [meV], (α2,α3) = (0, 0). (5)

|mee| =
∣∣∣∣

3∑

i=1

miU
2
ei

∣∣∣∣ $ 1.24 [meV] (α2,α3) = (π, 0) (6)

$ 0.17 [meV] (α2,α3) = (0, 0). (7)

ZNFC
2 U(1)PQ CP

Hu 1 0 1

Hd −1 0 1

θu 1 −1 +i

θd −1 −1 −i

表 1: The charge assignments of the SM fermions and scalar fields under

the gauge and the flavor symmetries.

−→ ϕu = π/2, ϕd = 0. (8)

strong CP

10−10 ! θ̄ = θQCD + θQFD(≡ ArgDet[mumd]), (9)

1

q,u,dの	

位相変換

3.1 Implications to the strong CP problem

As a related issue, the strong CP problem is considered [108]. This is a fine-tuning problem
of θ̄ = θQCD + θQFD, a sum of QCD θ-term θQCD and its fermionic contribution θQFD =
ArgDet[mumd] [133].

Although Yu,d in Eq. (33) are not Hermitian matrices, θtreeQFD = 0 holds because they satisfy

φu + φd − 2φq = 0. (39)

Under the condition (39), mass matrices generally have two more free parameters (for example,
φq and φu + φd). Then, the reflection symmetries (in this basis) can have a similar function
to the discrete symmetry P [109, 110] or CP [111] in a solution of the strong CP problem.
Moreover, θ̄ is dynamically retained to zero by a flavored axion [105–107,134–139] (flaxion [106]
or axiflavon [107]) associates with the SSB of U(1)PQ. If the cut-off scale Λ is taken to be the
GUT scale Λ " 1016 [GeV], Eqs. (35) and (36) suggests that

〈θu,d〉 ∼ ΛGUT

√
mu,dmc,s

v
∼ 1012 [GeV]. (40)

This is consistent with phenomenological constraints [106] and predicts the axion mass ma "
10−6 [eV], the dark matter abundance Ωah2 ∼ 0.2. These chiral and GCP symmetry may shed
light on the Strong CP problem and the origin of CP violation.

4 Physical parameters

Next, let us consider predictions of mass eigenvalues and mixings. Derivation of these physical
parameters is done in the previous study [79]. It is well known that the four-zero texture can
reproduce quark masses and the CKM matrix. Then, we focus on the lepton sector.

Diagonalizing the mass matrices mdiag
f = U †

LfmfURf , one obtains the MNS matrix

UMNS = U †
LeULν . (41)

An approximate form of the MNS matrix is found to be

UMNS = V T
e




−i 0 0
0 1 0
0 0 1



VνPM , (42)

where

Vν =




1 0 0
0 c23 s23
0 −s23 c23








c13 0 s13
0 1 0

−s13 0 c13








c12 s12 0
−s12 c12 0
0 0 1



 , (43)

Ve "




1 0 0
0

√
re

√
1− re

0 −
√
1− re

√
re









1 −
√

me

mµ
0

√
me

mµ
1 0

0 0 1




, (44)
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まとめ
• Reflection	sym.というSMの新しいGCPを提案	 	

⇒	Majorana位相 	α2,3	/2	=	0	or	π/2	
　		⇒ エルミート性やミラー粒子なしに と = 0が両立	

• +	universal	four-zero	texture	
⇒	すべてのfermion	質量とVCKM	&	UMNSを再現	

⇒	δCP	≒	203°,	通常質量階層、m1	≒	2.5	or	6.2	meVを予言	

• この構造はseesaw不変なので、Yνに課せばMRも従う	

• 第１世代の軽さから、くりこみに耐えうる
• + 対称性の実現のために2HDM+U(1)PQ × CPでSSBを考えた
⇒   ～ 1012 GeV ⇒  ～ 0.2. axion DM?

δCKM θtree
QFD

fa ∼ MGUT mu,dmc,s /v Ωah2



That’s	all.	Thank	you!
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位相変換後のreflection	symmetries

Surprisingly,

−U∗
BMTuU

†
BM =




−1 0 0
0 1 0
0 0 1



 ≡ R, (12)

U∗
BMTdU

†
BM =




1 0 0
0 1 0
0 0 1



 = 13. (13)

Then, the µ− τ reflection symmetries in the four-zero basis are transformed into

Rm∗
u,νR = mu,ν , m∗

d,e = md,e. (14)

Hermitian or symmetric mass matrices which satisfy Eq. (14) are given by

mu =




au ibu icu

−ibu du eu
−icu eu fu



 , mν =




aν ibν icν
ibν dν eν
icν eν fν



 , md,e =




ad,e bd,e cd,e
bd,e dd,e ed,e
cd,e ed,e fd,e



 , (15)

with real parameters af ∼ ff . The mass matrices (9)-(10) certainly satisfy these conditions.
We call such a symmetry reflection because it is a remnant of µ − τ reflection symmetry after
deduction of µ − τ symmetry. Each of them is just a generalized CP symmetry [81, 83–85, 87]
and no longer a µ − τ reflection. The textures (9) are discussed for quarks and CKM matrices
in many studies ( [9] and references therein). However, we can not found a paper that indicates
the existence of GCP symmetries.

The latest calculation shows an example of Yukawa matrices compatible with all the flavor
data of quarks [13]:

Y 0
u $ 0.9mt

√
2

v




0 0.0002 i 0

−0.0002 i 0.10 0.31 e±0.02π

0 0.31 e∓0.02π 1



 , (16)

Y 0
d $ 0.9mb

√
2

v




0 0.005 0

0.005 0.13 0.31 e∓0.02π

0 0.31 e±0.02π 1



 , (17)

where v = 246 [GeV] is the vacuum expectation value (vev) of the SM Higgs field. The tex-
tures (9) agree with (16) and (17) in the accuracy of O(2, 3%). Breaking effects come from
phases of the 23 element Bu,d eiϕu,d , where ϕu,d ∼ ±0.02π.

Since the conditions (14) depend on a basis, they are changed by further redefinitions of
fermion fields. For example, rephasing of quark fields Q = q, u, d

Q′ = P †
QQ, PQ = diag(eiφQ , 1, 1), (18)

leads to CP -violating quark masses m̃u,d;

m̃u = P †
qmuPu =




au ie−iφqbu ie−iφqcu

−ieiφubu du eu
−ieiφucu eu fu



 , (19)

m̃d = P †
qmdPd =




ad e−iφqbd e−iφqcd

eiφdbd dd ed
eiφdcd ed fd



 . (20)
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1

先ほどの例にするには

In this case, by the following equivalent transformation ここに間違いがある、修正！、
Rq,u ≡ Pq,uRPq,u =




−e2iφq,u 0 0

0 1 0
0 0 1



 , R̃q,d ≡ Pq,d13Pq,d =




+e2iφq,d 0 0

0 1 0
0 0 1



 , (21)

deforms the reflection symmetries (14) as

R†
qm̃

∗
uRu = m̃u, R̃†

qm̃
∗
dR̃d = m̃d. (22)

In this basis, the Hermiticity of the quark masses is lost, as shown in Eqs. (19) and (20). The
symmetries Eq. (6), Eq. (14), and Eq. (22) are all equivalent under redefinitions of fermion fields.

3 Realization of the symmetries

The µ− τ reflection symmetry is often realized as a remnant of a larger flavor symmetry, such
as A4, Z2 × Z2, U(1)Lµ−Lτ , and so on [56–78]. The origin of four-zero texture is also discussed
in S3L × S3R model [122–125]. Then, in this section, we concentrate on a realization of the
reflection symmetries. Since Eq. (6) or Eq. (14) imposes two independent GCP, underlying CP
should be broken separately in the up- and down-sector [88].

To this end, the following U(1)PQ × Z2 flavor symmetry and a GCP symmetry are imposed
on the 2HDM. A similar model-building and its UV completion can be found in [126–128].

• ZNFC
2 : It realizes the natural flavor conservation (NFC) [129] and prohibits flavor changing

neutral currents (FCNCs) by two Higgs doublets.

• U(1)PQ : A chiral (PQ) symmetry [100] that prohibits the mass of the first generations1.
It is a kind of flavored PQ symmetry [105,130,131].

• CP : A generalized CP symmetry that restricts phases of Yukawa couplings. As an
alternative way, the driving field method [132] is utilized to generate the relative phases.

Two SM singlet flavon fields θu,d are introduced to the 2HDM. These flavons have nontrivial
charges under the U(1)PQ and CP symmetry. Simultaneous breaking of these symmetries by
vevs of θu,d provokes CPV only for the first generations. The charge assignment of fields is
presented in Table 1.

Under the U(1)PQ symmetry, only the first-generations have nontrivial charges as

q1L → e−iαq1L, u1R → eiαu1R, d1R → eiαd1R, (23)

l1L → e−iαl1L, ν1R → eiαν1R, e1R → eiαe1R. (24)

The bilinear terms q̄LiuRj , q̄LidRj , l̄LiνRj and, l̄LieRj (associated with Yukawa interactions) are
transformed under U(1)PQ as




e2iα eiα eiα

eiα 1 1
eiα 1 1



 . (25)

1A discrete symmetry larger than Z3 is also a possible choice.
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alternative way, the driving field method [132] is utilized to generate the relative phases.

Two SM singlet flavon fields θu,d are introduced to the 2HDM. These flavons have nontrivial
charges under the U(1)PQ and CP symmetry. Simultaneous breaking of these symmetries by
vevs of θu,d provokes CPV only for the first generations. The charge assignment of fields is
presented in Table 1.

Under the U(1)PQ symmetry, only the first-generations have nontrivial charges as

q1L → e−iαq1L, u1R → eiαu1R, d1R → eiαd1R, (23)

l1L → e−iαl1L, ν1R → eiαν1R, e1R → eiαe1R. (24)

The bilinear terms q̄LiuRj , q̄LidRj , l̄LiνRj and, l̄LieRj (associated with Yukawa interactions) are
transformed under U(1)PQ as




e2iα eiα eiα

eiα 1 1
eiα 1 1



 . (25)

1A discrete symmetry larger than Z3 is also a possible choice.
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ma ! 10−6 [eV], the dark matter abundance Ωah2 ∼ 0.2.

φu = 3π/4, φq = −φd = π/4




i 0 0

0 1 0

0 0 1



 m̃∗
u




i 0 0

0 1 0

0 0 1



 = m̃u,




−i 0 0

0 1 0

0 0 1



 m̃∗
d




−i 0 0

0 1 0

0 0 1



 = m̃d,

(10)
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sin θ23 = 0.0405, sin θ13 = 0.00361, sin θ12 = 0.2265 (11)

θ23 ! 49.2± 1◦, θ13 = 8.6± 0.1◦, θ12 = 33.4± 0.8◦ (1σ) (12)

sin θC = 0.22 !
√
md/ms ?

θ12, θ23, θ13, δPDG

VCKM =




1 0 0

0 c23 s23
0 −s23 c23








c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13








c12 s12 0

−s12 c12 0

0 0 1





(13)

mf =




a b b

c d e

c e d



 (14)

mu-tau symmetry



1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2








a b b

c d e

c e d








1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2



 =




a

√
2b 0√

2c d+ e 0

0 0 d− e





(15)

TBM mass matrix




√
2
3 − 1√

6
− 1√

6
1√
3

1√
3

1√
3

0 − 1√
2

1√
2








c+ d− b b b

b c d

b d c









√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2



 =




c+ d− 2b 0 0

0 c+ d+ b 0

0 0 c− d





(16)

2

(Both of θ∗uθd and its complex conjugate θ∗dθu has charge −1 under ZNFC
2 and −1 under CP ).

Then V2 has only real terms because θ∗uθu and θ∗dθd have trivial CP charges. Finally, quartic
terms made from the flavons should be a combination between {|θu|2, |θ2d|} or {θ∗uθd, θ∗dθu}, such
as |θu|2|θ2d| or θ∗uθdθ∗uθd. Since these terms have trivial charges under CP , V3 is a GCP invariant
and then the whole Higgs potential is invariant under CP . Therefore, in this basis, CP phases
are localized only in the first generations of Yukawa matrices. Real vevs of the flavon fields
〈θu,d〉 provokes a spontaneous symmetry breaking (SSB) of U(1)PQ, ZNFC

2 , and CP .
As a result, the vevs 〈θu,d〉 produces the following textures

Yu,d = (Ỹ 0
u,d +

〈θu,d〉
Λ

Ỹ 1
u,d) =





O(
〈θu,d〉2
Λ2 ) ẽ

〈θu,d〉
Λ eiϕu,d f̃

〈θu,d〉
Λ eiϕu,d

g̃
〈θu,d〉
Λ eiϕu,d d̃u,d c̃u,d

h̃
〈θu,d〉
Λ eiϕu,d b̃u,d ãu,d



 , (33)

where

ϕu = +π/4, ϕd = −π/4. (34)

These vevs can be estimated from the best fit values for Yu,d (16) and (17) as

〈θu〉
Λ

|Ỹ 1
u | $

√
2mumc

v sinβ
$ 3× 10−4

sinβ
, (35)

〈θd〉
Λ

|Ỹ 1
d | $

√
2mdms

v cosβ
$ 1× 10−4

cosβ
, (36)

where 〈H0
u〉 ≡ v sinβ/

√
2, 〈H0

d〉 ≡ v cosβ/
√
2 with 〈H0

u〉2 + 〈H0
d〉2 = v2/2. The small 11 matrix

elements in Eq. (33) are generated from Ỹ 2
f . They are negligible compared to Yukawa eigenvalues

of the first generation quarks:

〈θu,d〉2

Λ2
! 10−8 ( (yu, yd) $ (

mu

v sinβ
,

md

v cosβ
) $ (10−5, 10−5 tanβ). (37)

Therefore, Eq. (33) and (34) satisfy the reflection symmetries (22) with φu = 3π/4, φq = −φd =
π/4 and (mf )11 $ 0.

In this construction, Eqs. (16) and (17) stand for Ỹ 0
u $ Ỹ 0

d and Ỹ 1
u ∼ Ỹ 1

d . It indicates
an existence of u − d unification, such as the left-right symmetric model. Moreover, with a
u − d unified relation Ỹ 1

u = Ỹ 1
d (in the other basis of CP phases), simultaneous rotation of 2-3

generations by an orthogonal matrix O23 can realize zero textures

(Yu)13 = (Yd)13 = (Yu)31 = (Yd)31 = 0. (38)

Then the four-zero textures with reflection symmetries appear. Note that O23 is commutative
with the reflection symmetries, because it satisfies RO∗

23R = O23.
Realization of four-zero texture in the left-right symmetric model, such as a model in [13],

seems to lead a more concise model. We leave it for future work.
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Fritzsch-Xing	parameterization

Another	parameterization	of	the	CKM	matrix

Since	the	first-generation	has	tiny	mass,	only		
the	heavy	quark	mixing	receive	quantum	corrections

H.Fritzsch	and	Z-z.	Xing, Phys.Lett.B	413	(1997)	396-404,	ArXiv	9707215

experimental data on quark mixing and CP violation, modified versions of the Wolfenstein
parametrization with higher accuracy have been proposed in the literature [45].

Furthermore one can parametrize V in terms of the moduli of four independent matrix
elements, in terms of four independent angles of the unitarity triangles, or in terms of four
characteristic quantities of V [46]. The choice of any four parameters is arbitrary, and
different choices may be mathematically convenient for different physical purposes.

3.6 A unique description of flavor mixing

From a mathematical point of view, all different parametrizations of the flavor mixing
matrix are equivalent. However, this is not the case if we take the hierarchical structure
of the quark mass spectrum and its implications on the flavor mixing phenomenon into
account. It is well known that both the observed quark mass spectrum and the observed
values of the flavor mixing parameters exhibit a striking hierarchical structure. The latter
can be understood in a natural way as the consequence of a specific pattern of chiral
symmetries, whose breaking causes the towers of different masses to appear step by step.
Such a chiral evolution of the mass matrices leads, as argued in Ref. [43], to a specific way
to describe the flavor mixing (i.e., the parametrization P1 in Table 3.1):

V =





cu su 0
−su cu 0
0 0 1









e−iϕ 0 0
0 c s
0 −s c









cd −sd 0
sd cd 0
0 0 1





=





susdc+ cucde−iϕ sucdc− cusde−iϕ sus
cusdc− sucde−iϕ cucdc+ susde−iϕ cus

−sds −cds c



 , (3.29)

where su ≡ sin θu, sd ≡ sin θd, c ≡ cos θ, and so on. The three mixing angles may all be
arranged to lie in the first quadrant, and the phase parameter ϕ generally takes values
from 0 to 2π. This parametrization follows automatically from the generic Hermitian mass
matrices Mu and Md, if one imposes the constraints from the chiral symmetries and the
quark mass hierarchy on them (see section 4.1 for detailed discussions). Therefore it is
particularly useful for the study of realistic quark mass matrices. We shall see later on
that this representation also makes the properties of flavor mixing and CP violation more
transparent and proves to be very convenient for the phenomenology of B-meson decays.

The three mixing angles θ, θu and θd have direct physical meanings. The angle θ
describes the mixing between the second and third families. We shall refer to this mixing
(involving t and b quarks) as the “heavy quark mixing”. The angle θu primarily describes
the u-c mixing and will be denoted as the “u-channel mixing”. The angle θd primarily
describes the d-s mixing, and will be denoted as the “d-channel mixing”. Clearly there
exists an asymmetry between the mixing of the first and second families and that of the
second and third families, which in our view reflects interesting details of the underlying
dynamics of flavor mixing. The heavy quark mixing is a combined effect, involving both
charge +2/3 and charge −1/3 quarks, while the u- or d-channel mixing proceeds primarily
in the charge +2/3 or charge −1/3 sector. Therefore an experimental determination of θu
and θd would give us useful information about the underlying patterns of up and down
mass matrices.
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from 0 to 2π. This parametrization follows automatically from the generic Hermitian mass
matrices Mu and Md, if one imposes the constraints from the chiral symmetries and the
quark mass hierarchy on them (see section 4.1 for detailed discussions). Therefore it is
particularly useful for the study of realistic quark mass matrices. We shall see later on
that this representation also makes the properties of flavor mixing and CP violation more
transparent and proves to be very convenient for the phenomenology of B-meson decays.

The three mixing angles θ, θu and θd have direct physical meanings. The angle θ
describes the mixing between the second and third families. We shall refer to this mixing
(involving t and b quarks) as the “heavy quark mixing”. The angle θu primarily describes
the u-c mixing and will be denoted as the “u-channel mixing”. The angle θd primarily
describes the d-s mixing, and will be denoted as the “d-channel mixing”. Clearly there
exists an asymmetry between the mixing of the first and second families and that of the
second and third families, which in our view reflects interesting details of the underlying
dynamics of flavor mixing. The heavy quark mixing is a combined effect, involving both
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universal	texture	and	d-e	unification	has	predictions.	
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Figure 4.4: The running factors Rn (from MX to MZ) changing with tan βsusy in the
minimal supersymmetric standard model.

Now we concentrate on specific patterns of quark and charged lepton mass matrices
at the scale of supersymmetric grand unified theories (MX = 1016 GeV). In view of the
success of the Hermitian quark mass matrices with four texture zeros in accounting for
the low-energy flavor mixing phenomena, we take the following ansatz at the scale MX :

Mu =





0 + ix 0
−ix y ry
0 ry z



 ,

Md =





0 x′ 0
x′ y′ ry′

0 ry′ z′



 ,

Me =





0 x′ 0
x′ − 3y′ ry′

0 ry′ z′



 , (4.63)

where |x| " |y| " |z|, |x′| " |y′| " |z′|, and r is a constant of O(1). The texture zeros of
Mu,d,e as well as the relationship betweenMd andMe can naturally be obtained in a variety
of grand unified models where the down quarks and the charged leptons lie in the same
multiplet [75]. For example, the coupling of a Higgs boson in the 10 plets of an SO(10)
model gives certain entries in the Yukawa coupling matrices of the form (Md)ij = (Me)ij
(for i #= j), while a Higgs boson in the 126 plets yields (Md)22 = −3(Me)22. For simplicity
we have taken the phase difference between (Mu)12 and (Md)12 to be π/2, a value favored
by current data on CP violation. The constant r may take values such as 1,

√
2 or 2, from
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Mu,d,e as well as the relationship betweenMd andMe can naturally be obtained in a variety
of grand unified models where the down quarks and the charged leptons lie in the same
multiplet [75]. For example, the coupling of a Higgs boson in the 10 plets of an SO(10)
model gives certain entries in the Yukawa coupling matrices of the form (Md)ij = (Me)ij
(for i #= j), while a Higgs boson in the 126 plets yields (Md)22 = −3(Me)22. For simplicity
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the phenomenological point of view. It is obvious that the ansatz (4.63) totally involves
six free parameters (x, y, z and x′, y′, z′), which can be determined from the inputs of
three up-type quark masses and three charged lepton masses. Thus it is able to give seven
predictions at the weak scale MZ , three for the down-type quark masses and four for the
parameters of flavor mixing and CP violation. Of course some of these predictions depend
sensitively upon the unknown value of tan βsusy.

The predictions of this ansatz for the down-type quark masses read, at the scale MX

and in the next-to-leading order approximation, as follows:

md = 3me

(

1 +
4r2

9
· mµ

mτ

)

,

ms =
mµ

3

(

1− 4r2

9
· mµ

mτ

)

,

mb = mτ . (4.64)

To renormalize these results down to the weak scale MZ , we need to take into account the
evolutions of charged lepton masses

[

me

mµ

]

MZ

=

[

me

mµ

]

MX

,

[

mµ

mτ

]

MZ

=
[

mµ

mτ

]

MX

(

ξ−3
τ

)

(4.65)

and make use of the following running function in the framework of the minimal super-
symmetric standard model:

ζde = exp

[

+
1

16π2

∫ ln(MX/MZ)

0
Gde(χ) dχ

]

, (4.66)

where Gde = Gd − Ge with Gd and Ge given in terms of the gauge couplings g1, g2 and
g3 in Ref. [66]. With the inputs g21 = 0.127, g22 = 0.42 and g23 = 1.44 at the scale MZ , one
finds ζde = 2.27. The down-type quark masses at the weak scale turn out to be

md = 3me

(

1 +
4r2

9
· mµ

mτ
ξ3τ

)

ζde ,

ms =
mµ

3

(

1− 4r2

9
· mµ

mτ
ξ3τ

)

ζde ,

mb = mτ
ξtξ3b
ξ3τ

ζde . (4.67)

Taking r2 = 2 and tan βsusy = 50 for example, we obtain md ≈ 3.6 MeV, ms ≈ 76 MeV
and mb ≈ 3.2 GeV, essentially in agreement with the results listed in (2.9).

The predictions of the ansatz (4.63) for flavor mixing and CP violation at the weak
scale MZ can be obtained with the help of the renormalization relations in (4.61) and
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4.7 Mass matrices at superhigh energy scales

The phenomenological schemes of quark mass matrices can be studied not only at the
experimentally accessible scales (e.g., µ ≤ 102 GeV) but also at the scales of string or
grand unified theories (e.g., µ ≥ 1015 GeV). For the latter case the running of quark masses
and flavor mixing parameters from the superhigh scale to the weak-interaction scale must
be investigated with the help of renormalization-group equations. It is in general expected
that a particular scheme of mass matrices at one scale may be significantly changed at
another scale, e.g., the original texture zeros become nonvanishing as a straightforward
consequence of the running effect [66, 73]. In this section we first point out some generic
running behaviors of quark mass ratios and flavor mixing angles. Then we take into
account a specific ansatz of fermion mass matrices in the context of supersymmetric grand
unified theories for illustration.

The one-loop evolution equations for the Yukawa coupling matrices of quarks and
charged leptons, in the assumption of no threshold effect at the intermediate or superhigh
scales, have been presented in Ref. [74]. They can considerably be simplified if the
hierarchy of fermion masses and that of the CKM matrix elements are taken into account.
In the leading order approximation one finds that the running behaviors of quark mass
ratios and flavor mixing angles are governed only by the third-family Yukawa coupling
eigenvalues ft, fb and fτ . From a superhigh scale µ = MX to the weak scale µ = MZ , the
relevant evolution functions can be defined as

ξi = exp

[

− 1

16π2

∫ ln(MX/MZ)

0
f2
i (χ) dχ

]

(4.60)

with i = t, b or τ and χ = ln(µ/MZ), whose values depend on the specific model of
spontaneous symmetry breaking below the scale MX . We then arrive at the following
results, which are valid to a good degree of accuracy:

[

mu

mc

]

MZ

=
[

mu

mc

]

MX

,

[

md

ms

]

MZ

=
[

md

ms

]

MX

,

[

mc

mt

]

MZ

=
[

mc

mt

]

MX

(

ξxt ξ
y
b

)

,

[

ms

mb

]

MZ

=
[

ms

mb

]

MX

(ξyt ξ
x
b ) ; (4.61)

and

[tan θu]MZ
= [tan θu]MX

,

[tan θd]MZ
= [tan θd]MX

,

[sin θ]MZ
= [sin θ]MX

(ξt ξb)
y ,

[J ]MZ
= [J ]MX

(ξt ξb)
2y , (4.62)

where the coefficients (x, y) = (−1.5, 1.5), (−1.5,−0.5) and (−3,−1) in the standard
model, the two-Higgs doublet model and the minimal supersymmetric model, respectively.
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Figure 4.4: The running factors Rn (from MX to MZ) changing with tan βsusy in the
minimal supersymmetric standard model.

Now we concentrate on specific patterns of quark and charged lepton mass matrices
at the scale of supersymmetric grand unified theories (MX = 1016 GeV). In view of the
success of the Hermitian quark mass matrices with four texture zeros in accounting for
the low-energy flavor mixing phenomena, we take the following ansatz at the scale MX :

Mu =





0 + ix 0
−ix y ry
0 ry z



 ,

Md =





0 x′ 0
x′ y′ ry′

0 ry′ z′



 ,

Me =





0 x′ 0
x′ − 3y′ ry′

0 ry′ z′



 , (4.63)

where |x| " |y| " |z|, |x′| " |y′| " |z′|, and r is a constant of O(1). The texture zeros of
Mu,d,e as well as the relationship betweenMd andMe can naturally be obtained in a variety
of grand unified models where the down quarks and the charged leptons lie in the same
multiplet [75]. For example, the coupling of a Higgs boson in the 10 plets of an SO(10)
model gives certain entries in the Yukawa coupling matrices of the form (Md)ij = (Me)ij
(for i #= j), while a Higgs boson in the 126 plets yields (Md)22 = −3(Me)22. For simplicity
we have taken the phase difference between (Mu)12 and (Md)12 to be π/2, a value favored
by current data on CP violation. The constant r may take values such as 1,

√
2 or 2, from
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the phenomenological point of view. It is obvious that the ansatz (4.63) totally involves
six free parameters (x, y, z and x′, y′, z′), which can be determined from the inputs of
three up-type quark masses and three charged lepton masses. Thus it is able to give seven
predictions at the weak scale MZ , three for the down-type quark masses and four for the
parameters of flavor mixing and CP violation. Of course some of these predictions depend
sensitively upon the unknown value of tan βsusy.

The predictions of this ansatz for the down-type quark masses read, at the scale MX

and in the next-to-leading order approximation, as follows:

md = 3me
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,

ms =
mµ

3

(

1− 4r2

9
· mµ

mτ

)

,
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To renormalize these results down to the weak scale MZ , we need to take into account the
evolutions of charged lepton masses
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(4.65)

and make use of the following running function in the framework of the minimal super-
symmetric standard model:

ζde = exp

[

+
1

16π2

∫ ln(MX/MZ)

0
Gde(χ) dχ

]

, (4.66)

where Gde = Gd − Ge with Gd and Ge given in terms of the gauge couplings g1, g2 and
g3 in Ref. [66]. With the inputs g21 = 0.127, g22 = 0.42 and g23 = 1.44 at the scale MZ , one
finds ζde = 2.27. The down-type quark masses at the weak scale turn out to be

md = 3me
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4r2

9
· mµ
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ζde ,
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3
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ζde ,
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ξtξ3b
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ζde . (4.67)

Taking r2 = 2 and tan βsusy = 50 for example, we obtain md ≈ 3.6 MeV, ms ≈ 76 MeV
and mb ≈ 3.2 GeV, essentially in agreement with the results listed in (2.9).

The predictions of the ansatz (4.63) for flavor mixing and CP violation at the weak
scale MZ can be obtained with the help of the renormalization relations in (4.61) and

49

⇒

renormalized	mass	@	mZ	scale

4.7 Mass matrices at superhigh energy scales

The phenomenological schemes of quark mass matrices can be studied not only at the
experimentally accessible scales (e.g., µ ≤ 102 GeV) but also at the scales of string or
grand unified theories (e.g., µ ≥ 1015 GeV). For the latter case the running of quark masses
and flavor mixing parameters from the superhigh scale to the weak-interaction scale must
be investigated with the help of renormalization-group equations. It is in general expected
that a particular scheme of mass matrices at one scale may be significantly changed at
another scale, e.g., the original texture zeros become nonvanishing as a straightforward
consequence of the running effect [66, 73]. In this section we first point out some generic
running behaviors of quark mass ratios and flavor mixing angles. Then we take into
account a specific ansatz of fermion mass matrices in the context of supersymmetric grand
unified theories for illustration.

The one-loop evolution equations for the Yukawa coupling matrices of quarks and
charged leptons, in the assumption of no threshold effect at the intermediate or superhigh
scales, have been presented in Ref. [74]. They can considerably be simplified if the
hierarchy of fermion masses and that of the CKM matrix elements are taken into account.
In the leading order approximation one finds that the running behaviors of quark mass
ratios and flavor mixing angles are governed only by the third-family Yukawa coupling
eigenvalues ft, fb and fτ . From a superhigh scale µ = MX to the weak scale µ = MZ , the
relevant evolution functions can be defined as

ξi = exp

[

− 1

16π2

∫ ln(MX/MZ)

0
f2
i (χ) dχ

]

(4.60)

with i = t, b or τ and χ = ln(µ/MZ), whose values depend on the specific model of
spontaneous symmetry breaking below the scale MX . We then arrive at the following
results, which are valid to a good degree of accuracy:
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and

[tan θu]MZ
= [tan θu]MX

,

[tan θd]MZ
= [tan θd]MX

,

[sin θ]MZ
= [sin θ]MX

(ξt ξb)
y ,

[J ]MZ
= [J ]MX

(ξt ξb)
2y , (4.62)

where the coefficients (x, y) = (−1.5, 1.5), (−1.5,−0.5) and (−3,−1) in the standard
model, the two-Higgs doublet model and the minimal supersymmetric model, respectively.
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Figure 4.4: The running factors Rn (from MX to MZ) changing with tan βsusy in the
minimal supersymmetric standard model.

Now we concentrate on specific patterns of quark and charged lepton mass matrices
at the scale of supersymmetric grand unified theories (MX = 1016 GeV). In view of the
success of the Hermitian quark mass matrices with four texture zeros in accounting for
the low-energy flavor mixing phenomena, we take the following ansatz at the scale MX :

Mu =





0 + ix 0
−ix y ry
0 ry z



 ,

Md =


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

 ,
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

 , (4.63)

where |x| " |y| " |z|, |x′| " |y′| " |z′|, and r is a constant of O(1). The texture zeros of
Mu,d,e as well as the relationship betweenMd andMe can naturally be obtained in a variety
of grand unified models where the down quarks and the charged leptons lie in the same
multiplet [75]. For example, the coupling of a Higgs boson in the 10 plets of an SO(10)
model gives certain entries in the Yukawa coupling matrices of the form (Md)ij = (Me)ij
(for i #= j), while a Higgs boson in the 126 plets yields (Md)22 = −3(Me)22. For simplicity
we have taken the phase difference between (Mu)12 and (Md)12 to be π/2, a value favored
by current data on CP violation. The constant r may take values such as 1,
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the phenomenological point of view. It is obvious that the ansatz (4.63) totally involves
six free parameters (x, y, z and x′, y′, z′), which can be determined from the inputs of
three up-type quark masses and three charged lepton masses. Thus it is able to give seven
predictions at the weak scale MZ , three for the down-type quark masses and four for the
parameters of flavor mixing and CP violation. Of course some of these predictions depend
sensitively upon the unknown value of tan βsusy.

The predictions of this ansatz for the down-type quark masses read, at the scale MX

and in the next-to-leading order approximation, as follows:
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To renormalize these results down to the weak scale MZ , we need to take into account the
evolutions of charged lepton masses
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and make use of the following running function in the framework of the minimal super-
symmetric standard model:

ζde = exp

[

+
1

16π2

∫ ln(MX/MZ)

0
Gde(χ) dχ

]

, (4.66)

where Gde = Gd − Ge with Gd and Ge given in terms of the gauge couplings g1, g2 and
g3 in Ref. [66]. With the inputs g21 = 0.127, g22 = 0.42 and g23 = 1.44 at the scale MZ , one
finds ζde = 2.27. The down-type quark masses at the weak scale turn out to be
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Taking r2 = 2 and tan βsusy = 50 for example, we obtain md ≈ 3.6 MeV, ms ≈ 76 MeV
and mb ≈ 3.2 GeV, essentially in agreement with the results listed in (2.9).

The predictions of the ansatz (4.63) for flavor mixing and CP violation at the weak
scale MZ can be obtained with the help of the renormalization relations in (4.61) and
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4.7 Mass matrices at superhigh energy scales

The phenomenological schemes of quark mass matrices can be studied not only at the
experimentally accessible scales (e.g., µ ≤ 102 GeV) but also at the scales of string or
grand unified theories (e.g., µ ≥ 1015 GeV). For the latter case the running of quark masses
and flavor mixing parameters from the superhigh scale to the weak-interaction scale must
be investigated with the help of renormalization-group equations. It is in general expected
that a particular scheme of mass matrices at one scale may be significantly changed at
another scale, e.g., the original texture zeros become nonvanishing as a straightforward
consequence of the running effect [66, 73]. In this section we first point out some generic
running behaviors of quark mass ratios and flavor mixing angles. Then we take into
account a specific ansatz of fermion mass matrices in the context of supersymmetric grand
unified theories for illustration.

The one-loop evolution equations for the Yukawa coupling matrices of quarks and
charged leptons, in the assumption of no threshold effect at the intermediate or superhigh
scales, have been presented in Ref. [74]. They can considerably be simplified if the
hierarchy of fermion masses and that of the CKM matrix elements are taken into account.
In the leading order approximation one finds that the running behaviors of quark mass
ratios and flavor mixing angles are governed only by the third-family Yukawa coupling
eigenvalues ft, fb and fτ . From a superhigh scale µ = MX to the weak scale µ = MZ , the
relevant evolution functions can be defined as

ξi = exp

[

− 1
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0
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i (χ) dχ

]

(4.60)

with i = t, b or τ and χ = ln(µ/MZ), whose values depend on the specific model of
spontaneous symmetry breaking below the scale MX . We then arrive at the following
results, which are valid to a good degree of accuracy:
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and
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where the coefficients (x, y) = (−1.5, 1.5), (−1.5,−0.5) and (−3,−1) in the standard
model, the two-Higgs doublet model and the minimal supersymmetric model, respectively.
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the phenomenological point of view. It is obvious that the ansatz (4.63) totally involves
six free parameters (x, y, z and x′, y′, z′), which can be determined from the inputs of
three up-type quark masses and three charged lepton masses. Thus it is able to give seven
predictions at the weak scale MZ , three for the down-type quark masses and four for the
parameters of flavor mixing and CP violation. Of course some of these predictions depend
sensitively upon the unknown value of tan βsusy.

The predictions of this ansatz for the down-type quark masses read, at the scale MX

and in the next-to-leading order approximation, as follows:
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To renormalize these results down to the weak scale MZ , we need to take into account the
evolutions of charged lepton masses
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and make use of the following running function in the framework of the minimal super-
symmetric standard model:

ζde = exp

[

+
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16π2
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Gde(χ) dχ
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, (4.66)

where Gde = Gd − Ge with Gd and Ge given in terms of the gauge couplings g1, g2 and
g3 in Ref. [66]. With the inputs g21 = 0.127, g22 = 0.42 and g23 = 1.44 at the scale MZ , one
finds ζde = 2.27. The down-type quark masses at the weak scale turn out to be

md = 3me

(

1 +
4r2

9
· mµ

mτ
ξ3τ

)

ζde ,

ms =
mµ

3

(

1− 4r2

9
· mµ

mτ
ξ3τ

)

ζde ,

mb = mτ
ξtξ3b
ξ3τ

ζde . (4.67)

Taking r2 = 2 and tan βsusy = 50 for example, we obtain md ≈ 3.6 MeV, ms ≈ 76 MeV
and mb ≈ 3.2 GeV, essentially in agreement with the results listed in (2.9).

The predictions of the ansatz (4.63) for flavor mixing and CP violation at the weak
scale MZ can be obtained with the help of the renormalization relations in (4.61) and
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Figure 4.4: The running factors Rn (from MX to MZ) changing with tan βsusy in the
minimal supersymmetric standard model.

Now we concentrate on specific patterns of quark and charged lepton mass matrices
at the scale of supersymmetric grand unified theories (MX = 1016 GeV). In view of the
success of the Hermitian quark mass matrices with four texture zeros in accounting for
the low-energy flavor mixing phenomena, we take the following ansatz at the scale MX :

Mu =




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0 ry z



 ,
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
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
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x′ − 3y′ ry′

0 ry′ z′



 , (4.63)

where |x| " |y| " |z|, |x′| " |y′| " |z′|, and r is a constant of O(1). The texture zeros of
Mu,d,e as well as the relationship betweenMd andMe can naturally be obtained in a variety
of grand unified models where the down quarks and the charged leptons lie in the same
multiplet [75]. For example, the coupling of a Higgs boson in the 10 plets of an SO(10)
model gives certain entries in the Yukawa coupling matrices of the form (Md)ij = (Me)ij
(for i #= j), while a Higgs boson in the 126 plets yields (Md)22 = −3(Me)22. For simplicity
we have taken the phase difference between (Mu)12 and (Md)12 to be π/2, a value favored
by current data on CP violation. The constant r may take values such as 1,
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the phenomenological point of view. It is obvious that the ansatz (4.63) totally involves
six free parameters (x, y, z and x′, y′, z′), which can be determined from the inputs of
three up-type quark masses and three charged lepton masses. Thus it is able to give seven
predictions at the weak scale MZ , three for the down-type quark masses and four for the
parameters of flavor mixing and CP violation. Of course some of these predictions depend
sensitively upon the unknown value of tan βsusy.

The predictions of this ansatz for the down-type quark masses read, at the scale MX

and in the next-to-leading order approximation, as follows:
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To renormalize these results down to the weak scale MZ , we need to take into account the
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[

me

mµ

]

MZ

=

[

me

mµ

]

MX

,

[

mµ

mτ

]

MZ

=
[

mµ

mτ

]

MX

(

ξ−3
τ

)

(4.65)

and make use of the following running function in the framework of the minimal super-
symmetric standard model:

ζde = exp

[

+
1

16π2

∫ ln(MX/MZ)
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Gde(χ) dχ

]

, (4.66)

where Gde = Gd − Ge with Gd and Ge given in terms of the gauge couplings g1, g2 and
g3 in Ref. [66]. With the inputs g21 = 0.127, g22 = 0.42 and g23 = 1.44 at the scale MZ , one
finds ζde = 2.27. The down-type quark masses at the weak scale turn out to be
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Taking r2 = 2 and tan βsusy = 50 for example, we obtain md ≈ 3.6 MeV, ms ≈ 76 MeV
and mb ≈ 3.2 GeV, essentially in agreement with the results listed in (2.9).

The predictions of the ansatz (4.63) for flavor mixing and CP violation at the weak
scale MZ can be obtained with the help of the renormalization relations in (4.61) and
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Unfortunately,	this	scheme	contradicts	recent	observation	of	Vub	…

4.7 Mass matrices at superhigh energy scales

The phenomenological schemes of quark mass matrices can be studied not only at the
experimentally accessible scales (e.g., µ ≤ 102 GeV) but also at the scales of string or
grand unified theories (e.g., µ ≥ 1015 GeV). For the latter case the running of quark masses
and flavor mixing parameters from the superhigh scale to the weak-interaction scale must
be investigated with the help of renormalization-group equations. It is in general expected
that a particular scheme of mass matrices at one scale may be significantly changed at
another scale, e.g., the original texture zeros become nonvanishing as a straightforward
consequence of the running effect [66, 73]. In this section we first point out some generic
running behaviors of quark mass ratios and flavor mixing angles. Then we take into
account a specific ansatz of fermion mass matrices in the context of supersymmetric grand
unified theories for illustration.

The one-loop evolution equations for the Yukawa coupling matrices of quarks and
charged leptons, in the assumption of no threshold effect at the intermediate or superhigh
scales, have been presented in Ref. [74]. They can considerably be simplified if the
hierarchy of fermion masses and that of the CKM matrix elements are taken into account.
In the leading order approximation one finds that the running behaviors of quark mass
ratios and flavor mixing angles are governed only by the third-family Yukawa coupling
eigenvalues ft, fb and fτ . From a superhigh scale µ = MX to the weak scale µ = MZ , the
relevant evolution functions can be defined as

ξi = exp
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(4.60)

with i = t, b or τ and χ = ln(µ/MZ), whose values depend on the specific model of
spontaneous symmetry breaking below the scale MX . We then arrive at the following
results, which are valid to a good degree of accuracy:
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where the coefficients (x, y) = (−1.5, 1.5), (−1.5,−0.5) and (−3,−1) in the standard
model, the two-Higgs doublet model and the minimal supersymmetric model, respectively.
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the phenomenological point of view. It is obvious that the ansatz (4.63) totally involves
six free parameters (x, y, z and x′, y′, z′), which can be determined from the inputs of
three up-type quark masses and three charged lepton masses. Thus it is able to give seven
predictions at the weak scale MZ , three for the down-type quark masses and four for the
parameters of flavor mixing and CP violation. Of course some of these predictions depend
sensitively upon the unknown value of tan βsusy.
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To renormalize these results down to the weak scale MZ , we need to take into account the
evolutions of charged lepton masses

[

me

mµ

]

MZ

=

[

me

mµ

]

MX

,

[

mµ

mτ

]

MZ

=
[

mµ

mτ

]

MX

(

ξ−3
τ

)

(4.65)

and make use of the following running function in the framework of the minimal super-
symmetric standard model:
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where Gde = Gd − Ge with Gd and Ge given in terms of the gauge couplings g1, g2 and
g3 in Ref. [66]. With the inputs g21 = 0.127, g22 = 0.42 and g23 = 1.44 at the scale MZ , one
finds ζde = 2.27. The down-type quark masses at the weak scale turn out to be

md = 3me

(

1 +
4r2

9
· mµ

mτ
ξ3τ

)

ζde ,

ms =
mµ

3

(

1− 4r2

9
· mµ

mτ
ξ3τ

)

ζde ,

mb = mτ
ξtξ3b
ξ3τ

ζde . (4.67)

Taking r2 = 2 and tan βsusy = 50 for example, we obtain md ≈ 3.6 MeV, ms ≈ 76 MeV
and mb ≈ 3.2 GeV, essentially in agreement with the results listed in (2.9).

The predictions of the ansatz (4.63) for flavor mixing and CP violation at the weak
scale MZ can be obtained with the help of the renormalization relations in (4.61) and
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universal	texture	and	d-e	unification	has	predictions.	
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retained as approximate ones. The strong CP problem is considered as a related
issue.

The reflection symmetries are not invariant under the renormalization group
equations (RGEs) of the SM. RGEs of quarks at one-loop order are given by [122],

16π2dYu
dt

= [αu + Cu
u (YuY

†
u ) + Cd

u(YdY
†
d )]Yu, (49)

16π2dYd
dt

= [αd + Cu
d (YuY

†
u ) + Cd

d (YdY
†
d )]Yd, (50)

where t = ln(µ)/mZ , µ is an arbitrary renormalization scale, αf are flavor independent

contributions from the gauge and Higgs bosons. The coefficients Cf ′

f are given by

Cd
u = Cu

d = −3/2, Cu
u + Cd

d = 3/2. (51)

The contributions of leptons are neglected.
It has been pointed out that the four-zero texture and its CKM phase are ap-

proximately RGE invariant [123, 13]. The same statement holds for the reflection
symmetries. One of the best fit values for Yu,d [13]

Yu " 0.9mt

√
2

v




0 0.0002i 0

−0.0002i 0.10 0.31
0 0.31 1



 "
√
2

v




0 i

√
mumc 0

−i
√
mumc O(mt) O(mt)
0 O(mt) O(mt)



 , (52)

Yd " 0.9mb

√
2

v




0 0.005 0

0.005 0.13 0.31
0 0.31 1



 "
√
2

v




0

√
mdms 0√

mdms O(mb) O(mb)
0 O(mb) O(mb)



 , (53)

can reconstruct a term in Eq. (50) as

YuY
†
uYd =




1.17× 10−9i 2.34× 10−12 + 2.56× 10−7i 7.99× 10−7i
6.22× 10−6 0.00140− 1.17× 10−9i 0.00438
2.00× 10−5 0.00450− 3.63× 10−9i 0.0141



 (54)

"




iCuB̃uCd iCu(BuBd + B̃uB̃d) iCu(BuAd + B̃uBd)

(BuBu + B̃uB̃u)Cd O(BuAuBd)− iB̃uCuCd O(BuAuAd)
(AuBu +BuB̃u)Cd O(AuAuBd)− iBuCuCd O(AuAuAd)



 . (55)

In Eq. (55), several terms at the leading order are represented. Components of the

first row and column (specifically, (1, i) and (j, 1) components) of the term YuY
†
uYd are

insignificant. This is due to the smallness of |(mu,d)12| = |Cu,d| "
√
mu,dmc,s. Further-

more, influence to complex phases of (2, 2), (2, 3), (3, 2) and (3, 3) components are also
negligible because they are the second-order corrections of the small parameters
Cu,d.

Since the flavor depending terms in Eqs. (49) and (50) have a similar structure,
flavor dependent contributions almost do not change the couplings of the first gen-
erations. This statement holds without the four-zero texture as long as couplings in
the first row and column of the Yukawa matrices are sufficiently small. Therefore,
the reflection symmetries with these properties are approximately RGE invariant
and then they inherit flavor structures at a high energy scale.
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O(mt) O(mb)

素朴には	d-e	統一に失敗…？？

(摂動が悪いかも、なので2～5%くらい誤差あるかも)

(エルミート性か(md)13	=	0を放棄	…？)

Xing	&	Zhao,	NPB	897,	‘15

O(mτ)

with re ≡ Ae/mτ . PM ≡ diag(1, eiα2/2, eiα3/2) is the Majorana phases.
The mixing angles and mass differences of the latest global fit [133]

θPDG
23 = 49.7◦, θPDG

12 = 33.82◦, θPDG
13 = 8.61◦, (45)

∆m2
21 = 73.9 [meV2], ∆m2

31 = 2525 [meV2], (46)

determines the Dirac phase in the PDG parameterization δCP as

sin δCP = −0.390 #
√

me

mµ

c13s23
s13

, δCP # 203◦. (47)

It is very close to the best fit for the normal hierarchy (NH) δCP /◦ = 217+40
−28 [133].

Including the Majorana phases, one can reconstruct the neutrino mass matrix mν as

mν = VeUMNS




m1 0 0
0 m2 0
0 0 m3



UT
MNSV

T
e . (48)

The µ− τ reflection symmetries (6) restrict the Majorana phases to be α2,3/2 = nπ/2 (n = 0, 1)
[73]. The nontrivial phase π/2 comes from a negative mass eigenvalues. Moreover, if universal
texture (mf )11 = 0 for f = u, d, ν, e [38] and small 2-3 mixing of Ve is assumed, we can determine
the lightest neutrino mass m1 from the condition of the texture

m1 =
−eiα2m2s212 − eiα3m3t213

c212
, (49)

where t13 ≡ s13/c13. The numerical values of the mass are found to be

|m1| = 6.20 [meV] for (α2,α3) = (0, 0) or (π,π), (50)

= 2.54 [meV] for (α2,α3) = (0,π) or (π, 0), (51)

for the normal hierarchy case.
For the inverted mass hierarchy, the solutions do not have real values and then contradict

the reflection symmetries.

4.1 Universal four-zero texture

Here, we show a universal four-zero texture compatible with neutrino mixing parameters. An
additional assumption in this paper is (mν)13 = 0. This assumption can be justified like Eq. (38)
in the left-right symmetric models. This constraint realizes the universal four-zero texture and
determines the mixing parameter re = Ae/mτ in Eq. (44).

The mass matrix mν (48) is a matrix function of α2,α3,m1, and re. Solving an equation
(mν)13 = 0, we found two solutions of universal four-zero texture. The first solution with a large
re # 0.996 and its mass eigenvalues are found to be

mν0 #




0 −8.86i 0

−8.86i 29.3 26.4
0 26.4 14.6



 [meV] for (α2,α3) = (π, 0), (52)

(m1 ,m2 ,m3) = (2.54, −8.96, 50.3) [meV]. (53)
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Indeed the Majorana phases α2 = π,α3 = 0 are realized. In this basis, the charged lepton mass
matrix also shows the four-zero texture

me !




0 −7.058 0

−7.058 107.873 96.12
0 96.12 1740



 [MeV] for (mdiag
e )11 < 0, (mdiag

e )22 > 0 , (54)

!




0. 7.058 0

7.058 −95.898 108.1
0 108.1 1740



 [MeV] for (mdiag
e )11 > 0, (mdiag

e )22 < 0) . (55)

The second solution has a small re ! 0.0024;

m̃ν0 =




0 10.5 i 0

10.5 i 24.9 −22.0
0 −22.0 30.1



 [meV] for (α2,α3) = (0, 0), (56)

(m1 ,m2 ,m3) = (−6.20, 10.6, 50.6) [meV]. (57)

This solution results in (me)22 ! mτ and seems to be somewhat unnatural. However, perhaps it
relates large 22 and 23 elements of quarks Eq. (16) and (17) by a grand unified theory (GUT).

The right-handed neutrino mass matrix MR can be reconstructed from the type-I seesaw
mechanism [111–114] with some GUT relations. A u− ν unification such as in the Pati–Salam
GUT [108] can determine Yν from Eq. (16) as

Yν = Yu ! 0.9mt

√
2

v




0 0.0002 i 0

−0.0002 i 0.10 0.31
0 0.31 1



 . (58)

From Eq. (52) and (58), MR also displays a four-zero texture because the four-zero texture
is seesaw invariant [4, 6],

MR =
v2

2
Yνm

−1
ν0 Y

T
ν (59)

=




0 −1.08 i× 108 0

−1.08 i× 108 1.26× 1014 4.07× 1014

0 4.07× 1014 1.32× 1015



 [GeV]. (60)

Evidently MR also satisfies the reflection symmetry (14),

RM∗
RR = MR. (61)

Therefore, all the fermion mass respects the reflection symmetry with a four-zero texture.
The eigenvalues of MR are found to be

(MR1 ,MR2 ,MR3)

= (2.86× 106 , 3.73× 109 , 1.44× 1015) [GeV]. (62)

The Yukawa matrices Yν (58) is evaluated at mZ scale. Other renormalized values of quark
masses will lead to smaller eigenvalues of MR. For example, Yν is determined in other Pati–
Salam GUT

Yν =




i 0 0
0 1 0
0 0 1








0 Cν 0
Cν B̃ν Bν

0 Bν Aν








−i 0 0
0 1 0
0 0 1



 , (63)
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振り子の法則
世界は n次元フーリエモード

f(x) =

∫
dnk

(2π)n
f(k) eikx (1)

k = 0を選択したときのみ、世界から白黒を取り除く事が出来る！！

0.1 2011 秋の学会発表
Parity対称性

L ! ψ̄LiYfijΦψRj + ψ̄RiY
†
fijΦ

∗ψLj , (2)

P :ψL ↔ ψR, Φ∗ ↔ Φ ⇒ Yf = Y †
f (3)

(mν)11 = 0 ⇒ (mν)13 = 0 ⇒

m1 $ 2.5[meV], (α2,α3) = (π, 0).

m1 $ −6.2[meV], (α2,α3) = (0, 0).

|mee| =
∣∣∣∣

3∑

i=1

miU
2
ei

∣∣∣∣ $ 1.24[meV] (α2,α3) = (π, 0) (4)

$ 0.17[meV] (α2,α3) = (0, 0). (5)

0.2 2010 北大セミナー
sin θ23 = 0.0405, sin θ13 = 0.00361, sin θ12 = 0.2265 (6)

θ23 $ 49.2± 1◦, θ13 = 8.6± 0.1◦, θ12 = 33.4± 0.8◦ (1σ) (7)

sin θC = 0.22 $
√
md/ms ?

θ12, θ23, θ13, δPDG

1

（もう一方の解は(me)22～mτでやや不自然）

の解


