Finite N superconformal index via the AdS/CFT correspondence

East Asia Joint Symposium on Fields and Strings 2021 22-27 November 2021

> Y. Imamura Tokyo Institute of Technology

[Arai, YI, arXiv:1904.09776] [YI, arXiv:2108.12090]

AdS/CFT correspondence

[Maldacena, hep-th/9711200]

Gauge invariant operators

Various objects

We use the superconformal index as a mathematical tool to express the spectrum.

Superconformal index [Kinney, Maldacena, Minwalla, Raju, hep-th/0510251]

Cartan generators of PSU(2,2|4)

H : Hamiltonian (Dilatation) J_1, J_2 : Angular momenta R_1, R_2, R_3 : R-charges

$$I(q, y, u_i) = \operatorname{Tr}_{S^3 \times R} \left[(-1)^F q^{H + \frac{J_1 + J_2}{2}} y^{J_1 - J_2} u_1^{R_1} u_2^{R_2} u_3^{R_3} \right]$$
$$(u_1 u_2 u_3 = 1)$$

We can calculate this quantity on the gauge theory side for an arbitrary N by using localization formula.

Examples

(We turn off variables except for q (to save the space).)

$$\begin{split} I_{U(1)} &= 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 3q^2 + 0q^{\frac{5}{2}} + 0q^3 + 6q^{\frac{7}{2}} - 6q^4 \\ &+ 0q^{\frac{9}{2}} + 12q^5 - 18q^{\frac{11}{2}} + 27q^6 - 12q^{\frac{13}{2}} - 27q^7 \\ &+ 60q^{\frac{15}{2}} - 60q^8 + 24q^{\frac{17}{2}} + 76q^9 - 174q^{\frac{19}{2}} + 162q^{10} \\ &+ 0q^{\frac{21}{2}} - 240q^{11} + 432q^{\frac{23}{2}} - 348q^{12} - 144q^{\frac{25}{2}} \\ &+ 783q^{13} \dots \end{split}$$

$$\begin{split} I_{U(\infty)} &= 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 9q^2 - 6q^{\frac{5}{2}} + 21q^3 - 18q^{\frac{7}{2}} + 48q^4 \\ &- 42q^{\frac{9}{2}} + 99q^5 - 96q^{\frac{11}{2}} + 200q^6 - 198q^{\frac{13}{2}} + 381q^7 \\ &- 396q^{\frac{15}{2}} + 711q^8 - 750q^{\frac{17}{2}} + 1278q^9 - 1386q^{\frac{19}{2}} + 2256q^{10} \\ &- 2472q^{\frac{21}{2}} + 3879q^{11} - 4320q^{\frac{23}{2}} + 6564q^{12} - 7362q^{\frac{25}{2}} \\ &+ 10890q^{13} \quad \dots \end{split}$$

Large N

The parameter relation $N = \frac{L_{AdS}^4}{l_p^4}$ L_{AdS} : AdS radius l_p : Planck length

Large $N \leftrightarrow$ Classical analysis is justified.

 $I_{U(\infty)} =$

Supergravity KK modes in S^5

[Kinney, Maldacena, Minwalla, Raju, hep-th/0510251]

Finite N

Parameter relations L_{AdS} : AdS radius $N = \frac{L_{AdS}^4}{l_p^4}$ finite N \rightarrow quantum gravity l_p : Planck length $N = L_{AdS}^4 T_{D3}$ finite N \rightarrow Expanded D3-branes T_{D3} : D3 tension $N = L_{AdS}^4 T_{D3}$ finite N \rightarrow Expanded D3-branes

Interesting possibility

If a quantity is protected from quantum gravity correction, it may be possible to reproduce the finite N correction to the quantity as D3-brane contributions.

Superconformal index seems to be such a quantity.

Main claim [YI, arXiv:2108.12090]

Rigid branes (a toy model)

Rigid brane = D3 wrapped on a large S^3 in S^5

 $az_1 + bz_2 + cz_3 = 0$ $(a, b, c) \in \mathbb{CP}^2$

A rigid D3 = A point particle in CP^2

Degenerate states in [N, 0] of $SU(3) \in SO(6)_R$

"Index" of a rigid D3

$$I = q^N \chi_{[N,0]}(u)$$

 q^N : the energy of D3 $\chi_{[N,0]}(u)$: SU(3) character

$$\chi_{[N,0]}(u) = \sum_{k_1+k_2+k_3=N} u_1^{k_1} u_2^{k_2} u_3^{k_3}$$

$$\chi_{[0,0]} = 1$$

$$\chi_{[1,0]} = u_1 + u_2 + u_3$$

$$\chi_{[2,0]} = u_1^2 + u_2^2 + u_3^2 + u_1 u_2 + u_2 u_3 + u_3 u_1$$

:

Decomposition to harmonic oscillators

 $\frac{(qu_i)^N}{\left(1-\frac{u_{i+1}}{u_i}\right)\left(1-\frac{u_{i-1}}{u_i}\right)}$: harmonic oscillators of two rigid motions

↑obtained from the mode expansion of the vector multiplet on the wrapped D3

This is the index of the U(1) gauge theory on a wrapped D3.

We also define F_1 and F_2 in the same way.

$$I_{\text{single}} = I_{\text{SUGRA}} \times (F_1 + F_2 + F_3)$$

Numerical check

We want to get

$$I_{U(1)} = 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 3q^{2} + 0q^{\frac{5}{2}} + 0q^{3} + 6q^{\frac{7}{2}} - 6q^{4} + 0q^{\frac{9}{2}} + 12q^{5} - 18q^{\frac{11}{2}} + 27q^{6} - 12q^{\frac{13}{2}} - 27q^{7} + \cdots$$

SUGRA gives

$$I_{\text{SUGRA}} = 1 + \frac{0q^{\frac{1}{2}}}{1} + \frac{3q}{2} - \frac{2q^{\frac{3}{2}}}{1} + 9q^{2} - 6q^{\frac{5}{2}} + 21q^{3} - 18q^{\frac{7}{2}} + 48q^{4} - 42q^{\frac{9}{2}} + 99q^{5} - 96q^{\frac{11}{2}} + 200q^{6} - 198q^{\frac{13}{2}} + 381q^{7} + \cdots$$

Inclusion of *I*_{single} [Arai, YI, arXiv:1904.09776]

$$I_{\text{SUGRA}} + I_{\text{single}} = 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 3q^{2} + 0q^{\frac{5}{2}} + 0q^{3} + 6q^{\frac{7}{2}} - 6q^{4} + 0q^{\frac{9}{2}} + 12q^{5} - 18q^{\frac{11}{2}} - 85q^{6} + 504q^{\frac{13}{2}} - 1896q^{7} + \cdots$$

This is encouraging, but still we have mismatch.

Let us include the contribution from multiple-wrapping contributions.

 $U(n_1) \times U(n_2) \times U(n_3)$ quiver gauge theory is realized on the brane system

Proposal

The index is given by the following formula. [YI, arXiv:2108.12090]

$$I_{U(N)} = I_{\text{SUGRA}} \sum_{n_1, n_2, n_3=0}^{\infty} q^{(n_1+n_2+n_3)N} u_1^{n_1N} u_2^{n_2N} u_3^{n_3N} F_{n_1, n_2, n_3}$$

 F_{n_1,n_2,n_3} : index of the quiver gauge theory on the D3-branes (*N*-indep)

$$\begin{split} &I_{\text{single}} : (1,0,0), (0,1,0), (0,0,1) \\ &I_{\text{double}} : (2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1), (0,1,1) \\ &I_{\text{triple}} : (3,0,0), (0,3,0), (0,0,3), (2,1,0), (1,2,0), (0,2,1), (0,1,2), (2,0,1), (1,0,2), (1,1,1) \\ & \cdots \end{split}$$

Numerical check

Numerical check

Inclusion of multiple-wrapping contributions gives (for N = 1)

$$\begin{split} &I_{\text{SUGRA}} + I_{\text{single}} + I_{\text{double}} + I_{\text{triple}} + \cdots \\ &= 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 3q^2 + 0q^{\frac{5}{2}} + 0q^3 + 6q^{\frac{7}{2}} - 6q^4 \\ &+ 0q^{\frac{9}{2}} + 12q^5 - 18q^{\frac{11}{2}} + 27q^6 - 12q^{\frac{13}{2}} - 27q^7 \\ &+ 60q^{\frac{15}{2}} - 60q^8 + 24q^{\frac{17}{2}} + 76q^9 - 174q^{\frac{19}{2}} + 162q^{10} \\ &+ 0q^{\frac{21}{2}} - 240q^{11} + 432q^{\frac{23}{2}} - 348q^{12} - 144q^{\frac{25}{2}} \\ &+ 783q^{13} \dots = I_{U(1)} \end{split}$$

By summing up contributions up to $n_1 + n_2 + n_3 \le 3$ we found complete agreement up to q^{13} for N = 1. [YI, arXiv:2108.12090]

Summary

- We proposed a new method to calculate the index of N=4 SYM on the AdS side.
- Although we have no proof at present, numerical analysis showed it reproduces the correct answer.
- The method has been applied to many examples of AdS/CFT correspondence, and works well.

Application to other systems

AdS	CFT	Large N	Single-wrapping	Multiple-wrapping
$AdS_5 \times S^5$	4d <i>ℜ</i> =4 SYM	[Kinney, Maldacena, Minwalla, Raju, 05]	✓ [Arai, YI, 19]	✓[Arai, Fujiwara, YI, Mori, 20][YI, 21]
$\mathrm{AdS}_5 \times S^5 / Z_k^S$	4d <i>N</i> =3	[IY, Yokoyama, 16]	✓ [Arai, YI, 19]	
$AdS_5 \times S^5/\Gamma$	4d 𝒴=1 quiver	[Nakayama, 05]	✔ [Arai, Fujiwara, YI, Mori, 19]	
$AdS_5 \times SE_5$	4d <i>N</i> =1 quiver	[Nakayama, 06][Eager, Schmude, Tachikawa, 12][Agarwal, Amariti, Mariotti 13]	✔ [Arai, Fujiwara, YI, Mori, 19]	(✔) [Fujiwara, in preparation]
$AdS_5 \times S^5_{\alpha}$	4d	[Fayyazuddin, Spalinski, 98][Aharony, Fayyazuddin, Maldacena, 98]	✓ [YI, Murayama, 21]	
$AdS_4 \times S^7 / Z_k$	3d ABJM	[Bhattacharya, Bhattacharyya, Minwalla, Raju, 08][Kim, 09]	✔ [Arai, Fujiwara, YI, Mori, Yokoyama, 20]	
$AdS_7 \times S^4$	6d (2,0)	[Bhattacharya, Bhattacharyya, Minwalla, Raju, 08]	✔ [Arai, Fujiwara, YI, Mori, Yokoyama, 20]	(✔) [Arai, Fujiwara, YI, Mori, Yokoyama]
$\mathrm{AdS}_7 \times S^4 / Z_k$	6d (1,0)	[Ahn, Oh, Tatar, 98]	✔ [Fujiwara, YI, Mori, 21]	

As far as we have checked the formula reproduces finite N index correctly!

Thank you