Finite N superconformal index via the AdS/CFT correspondence

East Asia Joint Symposium on Fields and Strings 2021
22-27 November 2021

Y. Imamura
Tokyo Institute of Technology
[Arai, YI, arXiv:1904.09776]
[YI, arXiv:2108.12090]

AdS/CFT correspondence

$\mathcal{N}=4 \mathrm{U}(\mathrm{N}) \mathrm{SYM}$ $\operatorname{AdS}_{5} \times$

Gauge invariant operators

Various objects

We use the superconformal index as a mathematical tool to express the spectrum.

Superconformal index

$$
I\left(q, y, u_{i}\right)=\operatorname{Tr}_{S^{3} \times R}\left[(-1)^{\text {Cartan generators of } \operatorname{PSU}(2,2 \mid 4)} \begin{array}{r}
H: \text { Hamiltonian (Dilatation) } \\
J_{1}, J_{2}: \text { Angular momenta } \\
R_{1}, R_{2}, R_{3}: \text { R-charges }
\end{array}\right\}
$$

We can calculate this quantity on the gauge theory side for an arbitrary N by using localization formula.

Examples (We turn off variables except for q (to save the space).)

$$
\begin{aligned}
I_{U(1)} & =1+0 q^{\frac{1}{2}}+3 q-2 q^{\frac{3}{2}}+3 q^{2}+0 q^{\frac{5}{2}}+0 q^{3}+6 q^{\frac{7}{2}}-6 q^{4} \\
& +0 q^{\frac{9}{2}}+12 q^{5}-18 q^{\frac{11}{2}}+27 q^{6}-12 q^{\frac{13}{2}}-27 q^{7} \\
& +60 q^{\frac{15}{2}}-60 q^{8}+24 q^{\frac{17}{2}}+76 q^{9}-174 q^{\frac{19}{2}}+162 q^{10} \\
& +0 q^{\frac{21}{2}}-240 q^{11}+432 q^{\frac{23}{2}}-348 q^{12}-144 q^{\frac{25}{2}} \\
& +783 q^{13} \ldots \\
I_{U(\infty)} & =1+0 q^{\frac{1}{2}}+3 q-2 q^{\frac{3}{2}}+9 q^{2}-6 q^{\frac{5}{2}}+21 q^{3}-18 q^{\frac{7}{2}}+48 q^{4} \\
& -42 q^{\frac{9}{2}}+99 q^{5}-96 q^{\frac{11}{2}}+200 q^{6}-198 q^{\frac{13}{2}}+381 q^{7} \\
& -396 q^{\frac{15}{2}}+711 q^{8}-750 q^{\frac{17}{2}}+1278 q^{9}-1386 q^{\frac{19}{2}}+2256 q^{10} \\
& -2472 q^{\frac{21}{2}}+3879 q^{11}-4320 q^{\frac{23}{2}}+6564 q^{12}-7362 q^{\frac{25}{2}} \\
& +10890 q^{13} \ldots
\end{aligned} . .
$$

Large N

The parameter relation

$$
N=\frac{L_{\mathrm{AdS}}^{4}}{l_{p}^{4}} \quad \begin{aligned}
& L_{\mathrm{AdS}}: \text { AdS radius } \\
& l_{p}: \text { Planck length }
\end{aligned}
$$

Large $N \quad \leftrightarrow \quad$ Classical analysis is justified.

[Kinney, Maldacena, Minwalla, Raju, hep-th/0510251]

Finite N

Parameter relations

$$
\begin{array}{lll}
L_{\mathrm{AdS}}: \text { AdS radius } & N=\frac{L_{\mathrm{AdS}}^{4}}{l_{p}^{4}} & \text { finite } \mathrm{N} \rightarrow \text { quantum gravity } \\
l_{p}: \text { Planck length } & \\
T_{\mathrm{D} 3}: \mathrm{D} 3 \text { tension } & N=L_{\mathrm{AdS}}^{4} T_{\mathrm{D} 3} & \text { finite } \mathrm{N} \rightarrow \begin{array}{c}
\text { Expanded D3-branes } \\
\text { (Giant gravitons) }
\end{array}
\end{array}
$$

Interesting possibility

If a quantity is protected from quantum gravity correction, it may be possible to reproduce the finite N correction to the quantity as D3-brane contributions.

Superconformal index seems to be such a quantity.

Main claim

$I_{U(N)}=\mathbb{Q}+\mathbb{C}+\ldots$
 or, equivalently,

Strategy

Dynamical D3

Index formula

reduction

Rigid D3

$\underline{\text { Rigid branes (a toy model) }}$

Rigid brane = D3 wrapped on a large S^{3} in S^{5}

$$
a z_{1}+b z_{2}+c z_{3}=0 \quad(a, b, c) \in \mathrm{CP}^{2}
$$

A rigid $\mathrm{D} 3=\mathrm{A}$ point particle in CP^{2}
Degenerate states in $[N, 0]$ of $S U(3) \in S O(6)_{R}$

"Index" of a rigid D3

$$
I=q^{N} \chi_{[N, 0]}(u) \quad \begin{array}{ll}
q^{N}: \text { the energy of } \mathrm{D} 3 \\
\chi_{[N, 0]}(u): \operatorname{SU}(3) \text { character }
\end{array}
$$

$$
\chi_{[N, 0]}(u)=\sum_{k_{1}+k_{2}+k_{3}=N} u_{1}^{k_{1}} u_{2}^{k_{2}} u_{3}^{k_{3}}
$$

$$
\begin{aligned}
& \chi_{[0,0]}=1 \\
& \chi_{[1,0]}=u_{1}+u_{2}+u_{3} \\
& \chi_{[2,0]}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}
\end{aligned}
$$

Decomposition to harmonic oscillators

$$
q^{N} \chi_{[N, 0]}=\frac{\left(q u_{1}\right)^{N}}{\left(1-\frac{u_{2}}{u_{1}}\right)\left(1-\frac{u_{3}}{u_{1}}\right)}+\frac{\left(q u_{2}\right)^{N}}{\left(1-\frac{u_{3}}{u_{2}}\right)\left(1-\frac{u_{1}}{u_{2}}\right)}+\frac{\left(q u_{3}\right)^{N}}{\left(1-\frac{u_{1}}{u_{3}}\right)\left(1-\frac{u_{2}}{u_{3}}\right)}
$$

$\left(q u_{i}\right)^{N}$: classical energy and charges of a brane wrapped around a large circle $\frac{1}{\left(1-\frac{u_{i+1}}{u_{i}}\right)\left(1-\frac{u_{i-1}}{u_{i}}\right)}:$ harmonic oscillators of two rigid motions

Completion

Rigid motions
(only two d.o.f.)
All fluctuations

$$
\left(q u_{3}\right)^{N} \frac{1}{\left(1-\frac{u_{1}}{u_{3}}\right)\left(1-\frac{u_{2}}{u_{3}}\right)} \quad \square \quad\left(q u_{3}\right)^{N} \frac{\left(1-\frac{q^{\frac{1}{2}} y}{u_{3}}\right)\left(1-\frac{q^{\frac{1}{2}}}{y u_{3}}\right) \ldots}{\left(1-\frac{1}{q u_{3}}\right)\left(1-\frac{u_{1}}{u_{3}}\right)\left(1-\frac{u_{2}}{u_{3}}\right) \ldots}=: F_{3}
$$

\uparrow obtained from the mode expansion of the vector multiplet on the wrapped D3

This is the index of the $\mathrm{U}(1)$ gauge theory on a wrapped D3.
We also define F_{1} and F_{2} in the same way.

$$
I_{\text {single }}=I_{\text {SUGRA }} \times\left(F_{1}+F_{2}+F_{3}\right)
$$

Numerical check

We want to get

$$
\begin{aligned}
I_{U(1)} & =1+0 q^{\frac{1}{2}}+3 q-2 q^{\frac{3}{2}}+3 q^{2}+0 q^{\frac{5}{2}}+0 q^{3}+6 q^{\frac{7}{2}}-6 q^{4} \\
& +0 q^{\frac{9}{2}}+12 q^{5}-18 q^{\frac{11}{2}}+27 q^{6}-12 q^{\frac{13}{2}}-27 q^{7}+\cdots
\end{aligned}
$$

SUGRA gives

$$
\begin{aligned}
I_{\text {SUGRA }} & =1+0 q^{\frac{1}{2}}+3 q-2 q^{\frac{3}{2}}+9 q^{2}-6 q^{\frac{5}{2}}+21 q^{3}-18 q^{\frac{7}{2}}+48 q^{4} \\
& -42 q^{\frac{9}{2}}+99 q^{5}-96 q^{\frac{11}{2}}+200 q^{6}-198 q^{\frac{13}{2}}+381 q^{7}+\cdots
\end{aligned}
$$

Inclusion of $I_{\text {single }}$ [Arai, YI, arXiv:1904.09776]

$$
\begin{aligned}
I_{\text {SUGRA }}+I_{\text {single }} & =1+0 q^{\frac{1}{2}}+3 q-2 q^{\frac{3}{2}}+3 q^{2}+0 q^{\frac{5}{2}}+0 q^{3}+6 q^{\frac{7}{2}}-6 q^{4} \\
& +0 q^{\frac{9}{2}}+12 q^{5}-18 q^{\frac{11}{2}}-85 q^{6}+504 q^{\frac{13}{2}}-1896 q^{7}+\cdots
\end{aligned}
$$

This is encouraging, but still we have mismatch.

$\underline{2}^{\text {nd }}$ completion

Let us include the contribution from multiple-wrapping contributions.

$U\left(n_{1}\right) \times U\left(n_{2}\right) \times U\left(n_{3}\right)$ quiver gauge theory is realized on the brane system

Proposal

The index is given by the following formula. [YI, arXiv:2108.12090]

$$
I_{U(N)}=I_{\text {SUGRA }} \sum_{n_{1}, n_{2}, n_{3}=0}^{\infty} q^{\left(n_{1}+n_{2}+n_{3}\right) N} u_{1}^{n_{1} N} u_{2}^{n_{2} N} u_{3}^{n_{3} N} F_{n_{1}, n_{2}, n_{3}}
$$

$F_{n_{1}, n_{2}, n_{3}}$: index of the quiver gauge theory on the D3-branes (N-indep)

```
I
Idouble : (2,0,0), (0,2,0),(0,0,2),(1,1,0), (1,0,1),(0,1,1)
Itriple : (3,0,0),(0,3,0),(0,0,3),(2,1,0),(1,2,0),(0,2,1),(0,1,2),(2,0,1),(1,0,2),(1,1,1)
```


Numerical check

Numerical check

Inclusion of multiple-wrapping contributions gives (for $N=1$)

$$
\begin{aligned}
& I_{\text {SUGRA }}+I_{\text {single }}+I_{\text {double }}+I_{\text {triple }}+\cdots \\
& =1+0 q^{\frac{1}{2}}+3 q-2 q^{\frac{3}{2}}+3 q^{2}+0 q^{\frac{5}{2}}+0 q^{3}+6 q^{\frac{7}{2}}-6 q^{4} \\
& +0 q^{\frac{9}{2}}+12 q^{5}-18 q^{\frac{11}{2}}+27 q^{6}-12 q^{\frac{13}{2}}-27 q^{7} \\
& +60 q^{\frac{15}{2}}-60 q^{8}+24 q^{\frac{17}{2}}+76 q^{9}-174 q^{\frac{19}{2}}+162 q^{10} \\
& +0 q^{\frac{21}{2}}-240 q^{11}+432 q^{\frac{23}{2}}-348 q^{12}-144 q^{\frac{25}{2}} \\
& +783 q^{13} \ldots=I_{U(1)}
\end{aligned}
$$

By summing up contributions up to $n_{1}+n_{2}+n_{3} \leq 3$ we found complete agreement up to q^{13} for $N=1$.
[YI, arXiv:2108.12090]

Summary

- We proposed a new method to calculate the index of $\mathrm{N}=4 \mathrm{SYM}$ on the AdS side.
- Although we have no proof at present, numerical analysis showed it reproduces the correct answer.
- The method has been applied to many examples of AdS/CFT correspondence, and works well.

Application to other systems

AdS	CFT	Large N	Single-wrapping	Multiple-wrapping
$\mathrm{AdS}_{5} \times S^{5}$	$4 \mathrm{~d} \mathscr{N}=4 \mathrm{SYM}$	[Kinney, Maldacena, Minwalla, Raju, 05]	\checkmark [Arai, YI, 19]	\checkmark [Arai, Fujiwara, YI, Mori, 20][YI, 21]
$\mathrm{AdS}_{5} \times S^{5} / Z_{k}^{S}$	4d $\mathscr{P}^{=} 3$	[IY, Yokoyama, 16]	\checkmark [Arai, YI, 19]	
$\mathrm{AdS}_{5} \times S^{5} / \Gamma$	4d $\mathscr{P}^{=} 1$ quiver	[Nakayama, 05]	\checkmark [Arai, Fujiwara, YI, Mori, 19]	
$\mathrm{AdS}_{5} \times \mathrm{SE}_{5}$	$4 \mathrm{~d} \mathscr{P}=1$ quiver	[Nakayama, 06][Eager, Schmude, Tachikawa, 12][Agarwal, Amariti, Mariotti 13]	\checkmark [Arai, Fujiwara, YI, Mori, 19]	$(\boldsymbol{\checkmark})$ [Fujiwara, in preparation]
$\mathrm{AdS}_{5} \times S_{\alpha}^{5}$	4d $\mathfrak{N}^{=} 2 \mathrm{AD}$ \& MN	[Fayyazuddin, Spalinski, 98][Aharony, Fayyazuddin, Maldacena, 98]	\checkmark [YI, Murayama, 21]	
$\mathrm{AdS}_{4} \times S^{7} / Z_{k}$	3d ABJM	[Bhattacharya, Bhattacharyya, Minwalla, Raju, 08][Kim, 09]	- [Arai, Fujiwara, YI, Mori, Yokoyama, 20]	
$\mathrm{AdS}_{7} \times S^{4}$	$6 \mathrm{~d}(2,0)$	[Bhattacharya, Bhattacharyya, Minwalla, Raju, 08]	- [Arai, Fujiwara, YI, Mori, Yokoyama, 20]	($\boldsymbol{\checkmark}$) [Arai, Fujiwara, YI, Mori, Yokoyama]
$\mathrm{AdS}_{7} \times S^{4} / Z_{k}$	$6 \mathrm{~d}(1,0)$	[Ahn, Oh, Tatar, 98]	\checkmark [Fujiwara, YI, Mori, 21]	

As far as we have checked the formula reproduces finite N index correctly!

Thank you

