Anomaly of subsystem symmetry and anomaly inflow

Satoshi Yamaguchi (Osaka University)

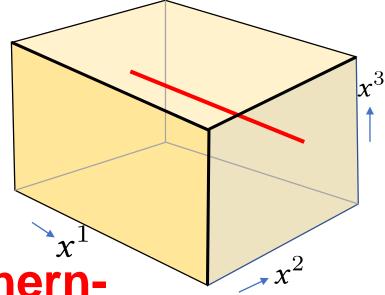
Based on [SY, arXiv:2110.12861]

key word

Subsystem symmetry

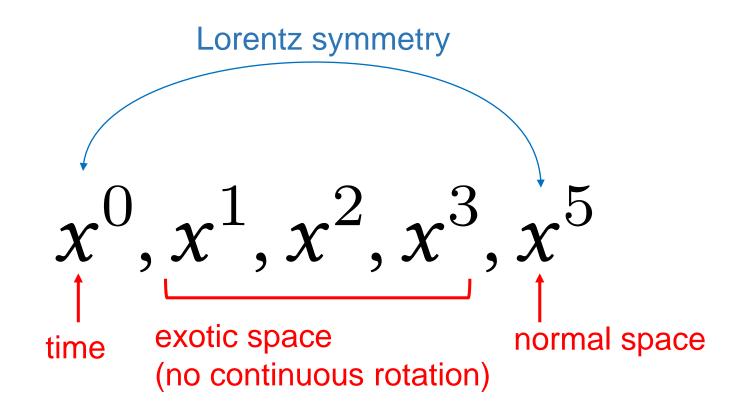
Subsystem symmetry

- An exotic symmetry in non-relativistic quantum system
- Charges are conserved within a certain subsystem
- It plays an important role in the study of fracton phases
- ≠ (higher form symmetry)



I would like to explore gauge theory, Chern-Simons theory, anomaly inflow, ... for subsystem symmetry.

Today's main setup: 4+1 dimensions



Periodic boundary condition is imposed for all space directions.

Suppose three component field
$$(J^0, J^{\#}, J^5)$$
 satisfies
 $\partial_0 J^0 + \partial_1 \partial_2 \partial_3 J^{\#} + \partial_5 J^5 = 0$

 $Q^{23}(x^2, x^3) := \int dx^1 dx^5 J^0$ is conserved for each (x^2, x^3) independently.
so are Q^{12}, Q^{31}

• •
$$\partial_0 Q^{23} = \int dx^1 dx^5 \partial_0 J^0 = -\int dx^1 dx^5 (\partial_1 \partial_2 \partial_3 J^\# + \partial_5 J^5) = 0$$

Symmetry associated with these charges is an example of **subsystem symmetry**

Gauge field for subsystem symmetry

Gauge field
$$(C_0, C_{\#}, C_5)$$

(coupling)
$$\sim \int d^5 x (C_0 J^0 + C_\# J^\# + C_5 J^5) = \int d^5 x C_A J^A$$

$$A = 0, \#, 5$$
 $\partial_\# := \partial_1 \partial_2 \partial_3$
Gauge transformation

$$C_A \to C'_A = C_A + \partial_A \lambda(x) \qquad \qquad \lambda \sim \lambda + 2\pi$$

(coupling) is gauge invariant.

**Notice $(\partial_{\#}f)g + f(\partial_{\#}g) = (\text{total derivative}) \neq \partial_{\#}(fg) \implies$ Integration by parts without boundary is possible

Gauge transformation
$$C_A \to C'_A = C_A + \partial_A \lambda(x)$$
 $\partial_{\#} := \partial_1 \partial_2 \partial_3$

Gauge invariant field strength

$$G_{AB} := \partial_A C_B - \partial_B C_A \qquad A, B = 0, \#, 5$$

Exotic Maxwell theory

$$S_M = \int d^5 x \left[\frac{1}{2h^2} G_{05}^2 + \frac{1}{2g^2} G_{\#0}^2 - \frac{1}{2g^2} G_{\#5}^2 \right]$$

g, h : coupling constants

The gauge field has three components, which resembles to 2+1-dimensional gauge field

Exotic Chern-Simons term

$$S_{CS} = \frac{k}{4\pi} \int d^5 x \ \epsilon^{ABC} C_A \partial_B C_C$$

totally anti-symmetric symbol
$$\epsilon^{0\#5} = 1$$

$$A, B, C = 0, \#, 5$$

$$\partial_{\#} := \partial_1 \partial_2 \partial_3$$

 $k \in \mathbb{Z}$ parameter

Exotic Maxwell-Chern-Simons theory

$$S = \int d^5x \left[\frac{1}{2h^2} G_{05}^2 + \frac{1}{2g^2} G_{\#0}^2 - \frac{1}{2g^2} G_{\#5}^2 + \frac{1}{4\pi} \epsilon^{ABC} C_A \partial_B C_C \right]$$

An analog of the topologically massive gauge theory in 2+1 dimensions.

[Deser, Jackiw, Templeton 82]

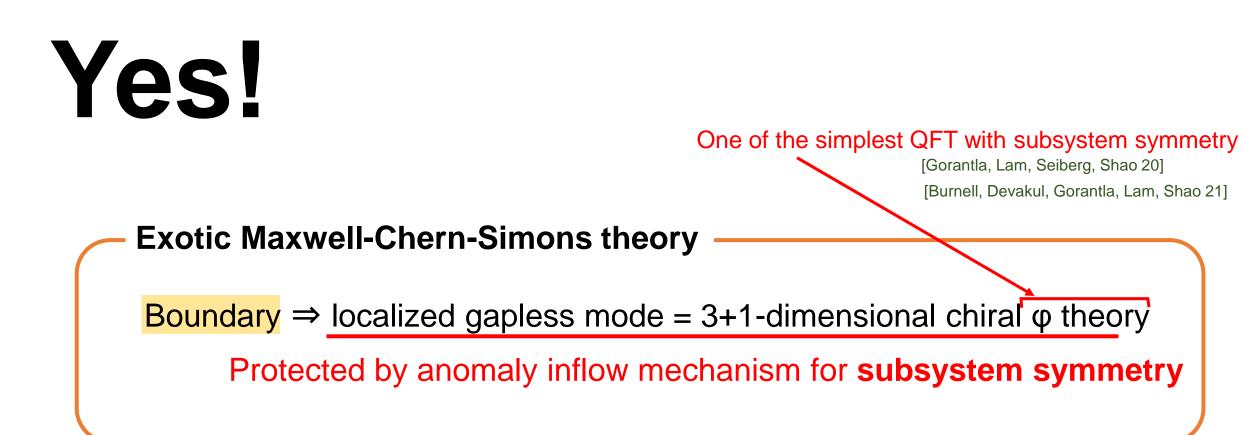
The topologically massive gauge theory in 2+1 dimensions. (2+1-dimensional Maxwell-Chern-Simons theory)

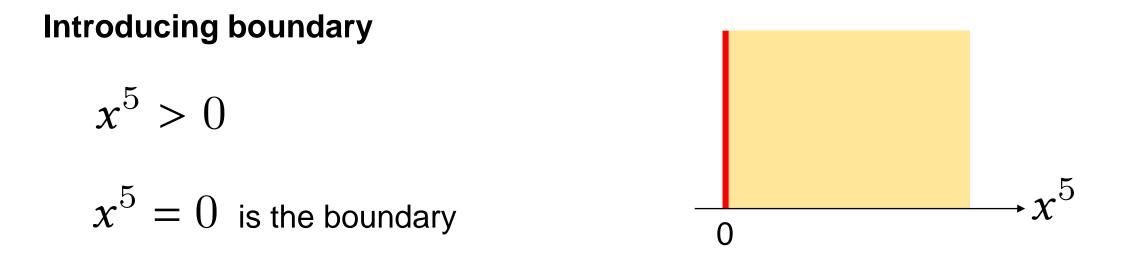
Boundary \Rightarrow localized gapless mode = 1+1-dimensional chiral boson

Protected by anomaly inflow mechanism

...[Hsieh, Tachikawa, Yonekura 20]

Does similar phenomenon happen in our exotic Maxwell-Chern-Simons theory?



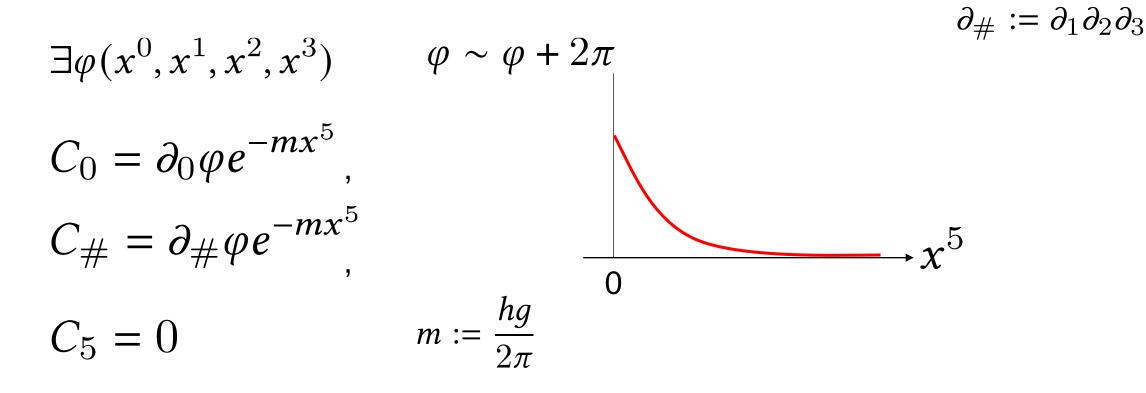


Boundary condition

$$(C_0, C_{\#})$$
 is pure gauge at $x^5 = 0$

Gauge symmetry is preserved.

Boundary localized mode



φ satisfies

$$(\partial_0 - \frac{h}{g} \partial_{\#}) \varphi = 0$$
 "chiral φ theory"

(cf 1+1 dim chiral boson $(\partial_0 - \partial_1)\varphi = 0$)

Robust?

Global subsystem symmetry "magnetic center symmetry"

Do not confuse with the gauge subsystem symmetry

Current

$$M^{A} := \frac{1}{2\pi} \epsilon^{ABC} \partial_{B} C_{C} \longrightarrow \partial_{A} M^{A} = 0$$
conservation law for subsystem symmetry

Our localized mode is protected by the anomaly inflow mechanism for this magnetic center symmetry.

Introduce background gauge field A_A (Do not confuse with the dynamical gauge field C_A)

$$Z[A] = \int DC \exp(-S[C] - \int d^5 x A_A M^A) = |Z[A]| \exp(-\frac{i}{4\pi} \int d^5 x \epsilon^{ABC} A_A \partial_B A_C)$$

This part does not change by continuous perturbation without closing the gap.
Boundary
Anomaly of chiral φ theory
Cancell
"Anomaly inflow mechanism"
This anomaly inflow mechanism is also discussed in
[Burnell, Devakul, Gorantta, Lam, Shao 21]

Chiral ϕ theory cannot disappear due to the gauge invariance.

Corner state

Consider space with corner

$$x^1, x^2, x^3 > 0$$

$$\phi = \phi(x^0, x^5), \quad \phi \sim \phi + 2\pi$$

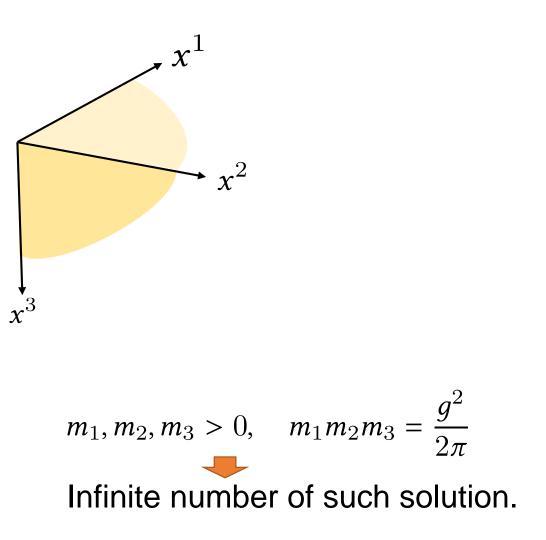
$$C_0 = \partial_0 \phi \exp(-m_1 x^1 - m_2 x^2 - m_3 x^3)$$

$$C_5 = \partial_5 \phi \exp(-m_1 x^1 - m_2 x^2 - m_3 x^3)$$

 $C_{\#} = 0$

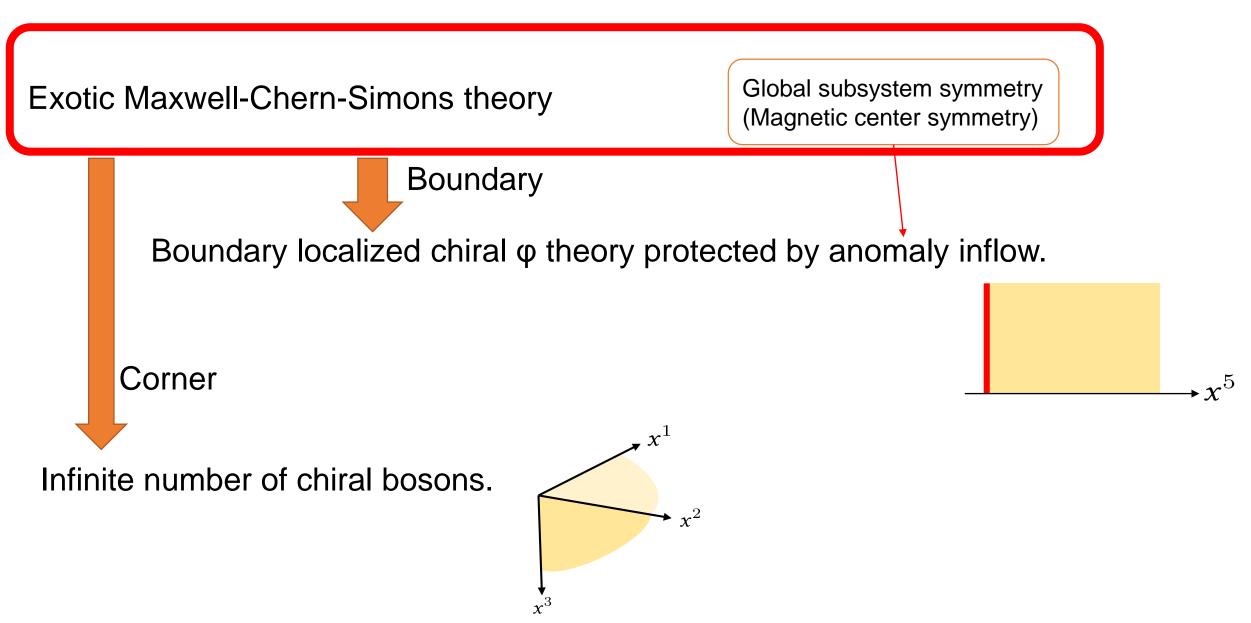
 $(\partial_0 + \partial_5)\phi = 0 \implies$ 1+1 dim chiral boson

Robust? Anomaly inflow? Future problem



Summary and discussion

Summary Subsystem symmetry



Discussion

Nice mathematical formulation of a gauge field for subsystem symmetry?
(cf ordinary (higher-form) U(1) gauge theory = differential cohomology) [Hsieh, Tachikawa, Yonekura 20]
Curved space?

Anomaly inflow for the corner states?

Applications to high-energy physics?

[Razamat 21] [Geng, Kachru, Karch, Nally, Rayhaun21]