Quantum black holes from matrix models

Seok Kim

(Seoul National University)

East Asian Joint Workshop, Osaka

Nov 23, 2021

Talk based on:
Sunjin Choi (KIAS), Saebyeok Jeong (Rutgers), SK \& Eunwoo Lee (SNU) "Exact QFT duals of AdS black holes" 2111.10720

Introduction

- Microscopic studies of black holes often demand exploring challenging quantum regimes (e.g. strong coupling, complex microstates, ...)
- Solvable (but still nontrivial) models in a well-defined setup
- BPS black holes \& quantitative lessons thereof.
- AdS/CFT \& precise definition of quantum gravity.
- Today, we study the maximal SYM index \& see how it views BH's in $A d S_{5} \times S^{5}$.
- 2004: BPS black holes constructed. [Gutowski, Reall]
- 2005: Constructed the an index. [Kinney, Maldacena, Minwalla, Raju]
- 2018 ~ : Started to understand how to see black holes from this index.
- Still, no exact large N saddle point solutions known in dual QFT, except in special limits (small/large charges). Today I explain how to construct them.

The $\mathrm{N}=4$ index on $S^{3} \times R$

- Counts BPS states saturating $E \geq Q_{1}+Q_{2}+Q_{3}+J_{1}+J_{2}$
- $Q_{I=1,2,3}$ are Cartans of $S O$ (6) R-charges, $J_{i=1,2}$ those of $S O(4)$ on S^{3}.

$$
\begin{aligned}
& Z\left(\Delta_{I}, \omega_{i}\right)=\operatorname{Tr}\left[(-1)^{F} e^{-\sum_{I=1}^{3} \Delta_{I} Q_{I}-\sum_{i=1}^{2} \omega_{i} J_{i}}\right] \\
& \Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}=0 \bmod 2 \pi i Z
\end{aligned}
$$

- Matrix integral representation for $\mathrm{U}(\mathrm{N})$ gauge group

$$
\begin{array}{r}
Z\left(\delta_{I}, \sigma, \tau\right) \sim \frac{1}{N!} \prod_{a=1}^{N} \int_{-\frac{1}{2}}^{\frac{1}{2}} d u_{a} \cdot \prod_{a \neq b} \frac{\prod_{I=1}^{3} \Gamma\left(\delta_{I}+u_{a b}, \sigma, \tau\right)}{\Gamma\left(u_{a b}, \sigma, \tau\right)} \\
\Delta_{I}=-2 \pi i \delta_{I}, \quad \omega_{1}=-2 \pi i \sigma, \quad \omega_{2}=-2 \pi i \tau
\end{array}
$$

- Fixing period conventions, take either $\delta_{1}+\delta_{2}+\delta_{3}-\sigma-\tau= \pm 1$. (complex-conjugate sectors)
- Elliptic gamma function:

$$
\Gamma(z, \sigma, \tau) \equiv \prod_{m, n=0}^{\infty} \frac{1-e^{-2 \pi i z} e^{2 \pi i((m+1) \sigma+(n+1) \tau)}}{1-e^{2 \pi i z} e^{2 \pi i(m \sigma+n \tau)}}
$$

- Understanding its properties is the starting point of our construction.

Elliptic gamma function

- $S L(3, Z)$ modularity (on " $T^{3} \sim\left(S^{1}\right)^{3 "}$ in $S^{3} \times S^{1}$)
- "S-duality": $\quad \Gamma(z, \sigma, \tau)=e^{-\pi i Q_{+}(z, \sigma, \tau)} \Gamma\left(\frac{z}{\tau},-\frac{1}{\tau}, \frac{\sigma}{\tau}\right) \Gamma\left(\frac{-z-1}{\sigma},-\frac{1}{\sigma},-\frac{\tau}{\sigma}\right)$

$$
\Gamma(z, \sigma, \tau)=e^{-\pi i Q_{-}(z, \sigma, \tau)} \Gamma\left(-\frac{z}{\sigma},-\frac{1}{\sigma},-\frac{\tau}{\sigma}\right) \Gamma\left(\frac{z-1}{\tau},-\frac{1}{\tau}, \frac{\sigma}{\tau}\right)
$$

$$
Q_{ \pm}=\frac{z^{3}}{3 \sigma \tau}-\frac{\sigma+\tau \mp 1}{2 \sigma \tau} z^{2}+\frac{\sigma^{2}+\tau^{2}+3 \sigma \tau \mp 3 \sigma \mp 3 \tau+1}{6 \sigma \tau}{ }_{z+\frac{1}{12}(\sigma+\tau \mp 1)}\left(\frac{1}{\sigma}+\frac{1}{\tau} \mp 1\right)
$$

- Period: $\Gamma(z+1, \sigma, \tau)=\Gamma(z, \sigma, \tau)$
- Quasi-periods: $\Gamma(z+\sigma, \sigma, \tau)=\theta(z, \tau) \Gamma(z, \sigma, \tau), \Gamma(z+\tau, \sigma, \tau)=\theta(z, \sigma) \Gamma(z, \sigma, \tau)$
(Similar to $S L(2, Z)$ on T^{2} : q-theta function $\theta(z / \tau,-1 / \tau)=\mathrm{e}^{\pi i B(z)} \theta(z, \tau)$, etc.)
- Assume $\operatorname{Im}(\sigma / \tau)>0$. "S-dual rewriting" of the integrand

$$
\begin{aligned}
& Z=\exp \left[-\frac{\pi i N^{2} \delta_{1} \delta_{2} \delta_{3}}{\sigma \tau}\right] \cdot \frac{1}{N!} \int d^{N} u \frac{\prod_{I=1}^{3} \Gamma\left(-\frac{\delta_{I}+u_{a b}+1}{\sigma},-\frac{1}{\sigma},-\frac{\tau}{\sigma}\right)}{\Gamma\left(-\frac{u_{a b}+1}{\sigma},-\frac{1}{\sigma},-\frac{\tau}{\sigma}\right)} \cdot \frac{\prod_{I=1}^{3} \Gamma\left(\frac{\delta_{I}+u_{a b}}{\tau},-\frac{1}{\tau}, \frac{\sigma}{\tau}\right)}{\Gamma\left(\frac{u_{a b}}{\tau},-\frac{1}{\tau}, \frac{\sigma}{\tau}\right)} \\
& \equiv I_{\sigma}(u)=e^{-V_{\sigma}(u)}: \\
& \text { periodic in } u_{a} \rightarrow u_{a}+\sigma \quad \text { periodic in } u_{a} \rightarrow u_{a}+\tau
\end{aligned}
$$

- Remember \rightarrow Quasi-periodicity realized as "factorization + exact σ, τ-periodicities"

Crude idea

- I first present semi-correct (thus semi-wrong) ideas.
- Factorized potential \& separate periods:

Uniform parallelogram distribution yields vanishing force.

$$
\begin{array}{ll}
\frac{\partial}{\partial u_{2}}=-\frac{\partial}{\partial u_{1}}=-\frac{\partial}{\sigma \partial x_{1}}=-\frac{\partial}{\tau \partial y_{1}} & u(x, y) \equiv \sigma x+\tau y,-1 / 2<x, y<1 / 2 \\
\underbrace{\frac{\partial}{\partial u_{2}} \int_{-\frac{1}{2}}^{\frac{\partial}{2}} d x_{1} d y_{1}\left[V_{\sigma}\left(u_{12}\right)+V_{\tau}\left(u_{12}\right)\right]}_{\text {force on eigenvalue at } u_{2}}=-\int_{-\frac{1}{2}}^{\frac{1}{2}} d x_{1} \underbrace{}_{\sigma}(\cdots+\sigma)-V_{\sigma}(\cdots)=0 \quad \frac{\partial V_{\sigma}\left(u_{12}\right)}{\partial x_{1}}+\frac{1}{\tau} \frac{\partial V_{\tau}\left(u_{12}\right)}{\partial y_{1}}]=0 \\
V_{\tau}(\cdots+\tau)-V_{\tau}(\cdots)=0
\end{array}
$$

- Caveat: Taking log may yield branch cuts, spoiling periodicities.
- Branch points in the domain of eigenvalue distribution (multi-parallelogram)...?
- Always \exists univeral branch points. "Haar measure singularity"

$$
\int[d U]=\frac{1}{N!} \int d^{N} u \prod_{a \neq b}\left(1-e^{2 \pi i u_{a b}}\right)
$$

After "S-dual rewriting," singularity

$$
\prod_{n}\left(1-e^{\left(2 \pi e^{*}\right.}\right)
$$ encoded in the following factor

Curing the caveat

- Haar measure singularity: Slightly reformulate the problem to evade it.
- If $f(u)$ is permutation-invariant, can replace Haar-like measure by half ("Molien-Weyl")

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} d^{N} u \cdot \frac{1}{N!} \prod_{a<b}\left(1-e^{2 \pi i \kappa u_{a b}}\right)\left(1-e^{-2 \pi i \kappa u_{a b}}\right) \cdot f(u)=\int_{-\frac{1}{2}}^{\frac{1}{2}} d^{N} u \cdot \prod_{a<b}\left(1-e^{2 \pi i \kappa u_{a b}}\right) \cdot f(u)
$$

- Insert $\kappa=1 / \tau$ and order the eigenvalues properly in the multi-parallelogram.
- Can always have $\left|e^{2 \pi i u_{a b} / \tau}\right|<1$ for $a<b$: no Haar measure singularity on RHS.
- Other branch point singularities stay outside our domain if

$$
\operatorname{Im}\left(\frac{\sigma-\delta_{I}}{\tau}\right)<0, \quad \operatorname{Im}\left(\frac{1+\delta_{I}}{\tau}\right)<0, \quad \operatorname{Im}\left(\frac{1-\tau+\delta_{I}}{\sigma}\right)<0, \quad \operatorname{Im}\left(\frac{\delta_{I}}{\sigma}\right)>0
$$

- If this constraint is met, our ansatz is a saddle point of RHS.
- Looks stupid that branch points obstruct our way. But its has a physics interpretation.

Free energy and entropy

- Free energy (on one of the two surfaces $\Delta_{1}+\Delta_{2}+\Delta_{3}-\omega_{1}-\omega_{2}= \pm 2 \pi i$)

$$
\log Z=-\frac{\pi i N^{2} \delta_{1} \delta_{2} \delta_{3}}{\sigma \tau}=\frac{N^{2} \Delta_{1} \Delta_{2} \Delta_{3}}{2 \omega_{1} \omega_{2}}
$$

- This function was first discovered by studying BH solutions [Hosseini, Hristov, Zaffaroni] (2017).
- Having got the same function from QFT, it derives the Bekenstein-Hawking entropy of BH's.
- "Entropy": Legendre transformation on the surfaces yield complex functions.

$$
S\left(Q_{I}, J_{i} ; \Delta_{I}, \omega_{i}\right)=\log Z+\sum_{I} \Delta_{I} Q_{I}+\sum_{i} \omega_{i} J_{i}
$$

- Two complex-conjugate sectors with same $\operatorname{Re}[S(Q, J)]$.
, leading entropy $\propto N^{2}$

$$
(\text { degeneracy with } \pm \operatorname{sign})=e^{S_{0}(Q, J)}+e^{S_{0}(Q, J)^{*}} \sim e^{\operatorname{Re}\left(S_{0}\right)} \cos \left[\operatorname{Im}\left(S_{0}\right)\right]
$$

Mostly determine the sign oscillation, also w/ small subleading entropy $\propto \log \left[\# \cos \left(\# N^{2}\right)\right]$.

- Realizes the sign-oscillation of the macroscopic degeneracies in an index.
[Agarwal, Choi, J. Kim, SK, Nahmgoong] (2020)

Constraints

- Naively, these constraints look weird. (The case with $\operatorname{Im}(\sigma / \tau)>0, \Sigma_{I} \delta_{I}-\sigma-\tau=-1$)

$$
\operatorname{Im}\left(\frac{\sigma-\delta_{I}}{\tau}\right)<0, \quad \operatorname{Im}\left(\frac{1+\delta_{I}}{\tau}\right)<0, \quad \operatorname{Im}\left(\frac{1-\tau+\delta_{I}}{\sigma}\right)<0, \quad \operatorname{Im}\left(\frac{\delta_{I}}{\sigma}\right)>0
$$

- Interpretation: "Stability conditions" of Euclidean gravity dual against D3-brane instantons.
[Aharony, Benini, Mamroud, Milan] (2021)

$$
S_{1 I}=2 \pi N \frac{\delta_{I}}{\sigma}, S_{2 I}=2 \pi N \frac{\delta_{I}}{\tau} \quad Z \leftarrow e^{i S_{i I}}
$$

$$
\begin{array}{ll}
\text { Wraps } S^{3} \subset S^{5}, & \operatorname{AdS} S_{5}: \\
& S^{3} \leftarrow S^{1}(\text { wrapped }) \\
S_{i I} & \downarrow \\
& S^{2} \text { (transverse, } \mathrm{N} / \mathrm{S} \text { pole) }
\end{array}
$$

- $\quad \operatorname{Im}\left(S_{i I}\right)>0$: Otherwise, transseries ruined. (Saddles presumably unstable.)
- These are stability conditions from only a selection of instantons.
- Our inequalities are stronger, suggesting more stability conditions.
- "Lorentzian signature" black holes violating this condition?
- Perhaps, "thermodynamic instability"
- Checked that the small black holes with high spin $J_{1}-J_{2}$ can increase its entropy by "emitting" graviton hairs. [Choi, Jeong, SK] (2021)

Concluding remarks

- Due to the lack of time, omitted some interesting findings \rightarrow Please see the paper.
- Future directions
- Connection between "excluding branch-point singularities" \& "gravitational stability" ...?
- In some regions, certain branch points approach arbitrarily close to our domain.
- Meaning, certain operators become very "light" in the background of black hole saddles.
- Comparing light QFT operators vs. light near-horizon BH modes...?
- Also found multi-cut saddles, sometimes with new continuous parameters. Gravity duals?
- More exact saddles?
- Exact AdS black holes in other dimensions, based on similar ideas?

