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On Galilean Conformal Bootstrap

Bin Chen

Peking University
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Based on the works
BC, Peng-xiang Hao, Reiko Liu and Zhe-fei Yu,
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Conformal bootstrap
A completely nonperturbative tool to study field theories!

Conformal bootstrap aims to constrain the CFT data by using the
crossing symmetry and unitarity.

The crossing equation

v∆O
∑
∆,ℓ

C12∆C34∆G∆,ℓ(u, v) = u∆O
∑
∆,ℓ

C14∆C23∆G∆,ℓ(v, u)

where u, v are the conformal invariant cross-ratios, and G∆,ℓ(u, v) is
called the conformal block (CB).
CFT data: spectrum {Oi} with {∆i, `i}, and the OPE coefficients Cijk.
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It would be interesting to extend conformal bootstrap program to field
theories with other conformal-like symmetries.
Schrödinger symmetry W. Goldberger et.al. 1412.8507

Carrollian conformal symmetry and Galilean conformal symmetry.
Warped conformal symmetry in 2D, Anisotropic Galilean conformal
symmetry in 2D, ...

In this talk, I would like to report our study of 2D Galilean conformal
field theories (GCFT) in the past few years.
(+ some recent studies on Carrollian CFT and GCFT in higher
dimensions, if time permits)
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Galilean conformal symmetry

Typical feature: in any dimensions, it is generated by an infinite
dimensional algebra, being called Galilean conformal algebra (GCA) Bagchi

and Gopakumar 0902.1385

Global part: could be obtained by a non-relativistic contraction of the
conformal symmetryM. Negro et.al. (1997), J. Lukierski et.al. 0511259

Translations, Isotropic scaling, Galilean transformations
Analogues of special conformal transformations,

The full GCA could be obtained by taking the non-relativistic limit of
conformal Killing equations, and is the maximal subset of non-relativistic
conformal isometriesC. Duval and P. Horvathy 0904.0531, D. Martelli and Y. Tachikawa, 0903.5184

In particular, 2D GCA is isotropic to BMS3

↪→ Flat holographyBagchi 1006.3354, · · ·
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2D Galilean conformal symmetry

Symmetry:

x → f (x), y → f ′(x)y.
x → x, y → y + g (x).

The symmetry is generated by the Galilean conformal algebraBagchi et.al. 0912.1090

[Ln, Lm] = (n − m)Ln+m + CTn(n2 − 1)δn+m,0,

[Ln,Mm] = (n − m)Mn+m + CMn(n2 − 1)δn+m,0,

[Mn,Mm] = 0.

Global subalgebra: {L±1, L0,M±1,M0}

Cartan subalgebra: {L0,M0}
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Primary operators

The local operators in a GCFT2 can be labelled by the eigenvalues (∆, ξ)
of the generators of the Cartan subalgebra (L0,M0)

[L0,O(0, 0)] = ∆O(0, 0), [M0,O(0, 0)] = ξO(0, 0).

∆: conformal weight ξ: boost charge
The highest weight representations require the primary operators satisfy

[Ln,O(0, 0)] = 0, [Mn,O(0, 0)] = 0, for n > 0.

The tower of descendant operators can be got by acting L−n,M−n with
n > 0 on the primary operators. A primary operator and its descendants
form a module.

The descendant states have negative norm states, reflecting the fact that
the theory is not unitary. For example, for the level-1 states
L−1|∆, ξ⟩,M−1|∆, ξ⟩, their inner products matrix has determinant −ξ2.
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Quasi-primary states
Hilbert space in 2D GCFT:

H =
∑

primary module
H∆,ξ,

where each module is composed of a primary state and its descendants.
However such a classification is not suited to bootstrap:

1. The conformal bootstrap is based on the global symmetry, rather
than the local one;

2. The explicit form of the local GCA block is unknown.

The Galilean conformal bootstrap is based on the global symmetry,
generated by L±1, L0,M±1,M0. This means that we should start from
“quasi-primary” operators. Actually this is feasible as the operators in
GCFT2 can be classified into different quasi-primary operators and their
global descendants.

H =
∑

quasiprimaries
H∆,ξ,
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Subtlety
M0 usually acts non-diagonally on these quasi-primary operators , even
though L0,M0 act diagonally on the primary operators.
Consider the following level-2 descendant operators of a primary
operators O with a weight ∆ and a charge ξ

A = L−2O, B = M−2O.

They are quasi-primary operators, on which M0 acts as

M0A = ξA+ 2B, M0B = ξB.

This phenomenon is typical in Galilean CFT, similar to Logarithmic CFT.
A and B share the same conformal dimension, and form a multiplet of
rank 2.
A primary operator is referred to as a singlet, or a rank-1 multiplet.
The existence of multiplet structure is a typical feature in GCFT, no
matter ξ ̸= 0 or ξ = 0.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multiplet

Simply speaking, the quasi-primary operators in a multiplet share the
same scaling dimension. The action of boost M0 gives a rank-r upper
triangular Jordan block

[L0,Oa] = ∆Oa, ∀a = 1, · · · r,
[M0,Oa] = ξOa +Oa+1,

[L1,Oa] = 0, [M1,Oa] = 0.

The quasi-primary operators in a multiplet together with their
descendants form a (generalized) highest weight representation of the
global group. This defines a rank-r multiplet : V∆,ξ,r.
For a rank-r multiplet V∆,ξ,r, the descendant states are

|a, n,m⟩r = Ln
−1Mm

−1|Oa
∆,ξ,r⟩, n,m ∈ Z+,

and l = n + m is called the level since L0|a, n,m⟩r = (∆ + l)|a, n,m⟩r.
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Hilbert space

Hilbert space:
H =

∑
multiplets

V∆,ξ,r

Notice: there could be null states in ξ = 0 multiplet.
The null states are the vectors in the kernel space of the Gram matrix of
inner product.
In 2D unitary relativistic CFT, the null states form sub-representations of
highest weight repr.

Physical Hilbert space =
Hilbert space

null states
The null states are orthogonal to the physical states, and thus lead to the
differential equations on the correlation functions.
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Hilbert space:
H =

∑
multiplets
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Null states in ξ = 0 singlets

If ξ = 0, the singlet representation V∆,0,1, ∆ > 0 is reducible and
indecomposable, containing null states.

▶ (n,m) stands for descendant
▶ The states below the first row

|n,m⟩,m ≥ 1 are null.
▶ The descendant state

|0, 1⟩ = M−1|O⟩ satisfies the
quasiprimary conditions, hence
they form a sub-representation
V1 = V∆+1,0,1 of V0 = V∆,0,1.
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Correlation functions with ξ = 0 singlet

With the null states, we may derive the differential equations on the
correlators.

∂

∂y ⟨O∆,0(x, y) · · ·⟩ = 0.

The three-point functions containing O∆,0 give the fusion rules of OPE.
For the singlet-singlet-O∆,0 case

∂

∂y3
⟨O∆1,ξ1O∆2,ξ2O∆,0(x3, y3)⟩ = 0,

implying that
c12,ξ=0(ξ1 − ξ2) = 0.

Either the boost charges satisfy ξ1 = ξ2, or the three point coefficient
vanishes c12,ξ=0 = 0.
This is still true even the singlets O1,O2 are replaced with the multiplets.
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Correlation functions of singlets
Two-point function:

⟨O1(x1, y1)O2(x2, y2)⟩ = δ∆1,∆2
δξ1,ξ2 |x12|−2∆ exp(2ξk12),

where
x12 ≡ x1 − x2, k12 ≡ y12

x12
=

y1 − y2
x1 − x2

.

Three-point function:

⟨O1O2O3⟩ = c123|x12|−∆12,3 |x23|−∆23,1 |x31|−∆31,2

· exp{ξ12,3k12 + ξ23,1k23 + ξ31,2k31},

where c123 are the three-point coefficients and

∆ij,k ≡ ∆i +∆j −∆k, ξij,k ≡ ξi + ξj − ξk.

The 2-pt and 3-pt functions of multiplets can be determined by the Ward
identities as well.
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4-point functions of quasi-primary operators

G4 = ⟨
4∏

i=1

Oi(xi, yi)⟩ =
∏
i,j

x
∑4

k=1

∆ij,k
3

ij e−
yij
xij

∑4
k=1

ξij,k
3 G(x, y)

where G(x, y) is called the stripped four-point function with x, y being the
cross ratios,

x ≡ x12x34
x13x24

,
y
x ≡ y12

x12
+

y34
x34

− y13
x13

− y24
x24

.

Crossing equation:

G21
34(x, y) = G41

32(1− x,−y).

In the following discussions, we focus on the 4-pt functions of identical
singlets.
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1. The 4-pt function could be expanded by the conformal blocks , which
are completely fixed by the conformal symmetry, depending on the
external operators, the specific OPE channel, and the propagating
operators.
2. It can also be expanded into an integral of the conformal partial waves
over unphysical unitary principal series. Under suitable conditions, the
block expansion is recovered from the inversion formula by a contour
deformation.
Let’s first look at the conformal block...
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Global block (of the singlet)Bagchi 1612.01730,1705.05890
The contribution of the primary operator and its global descendant
operators (which can be got by acting L−1 and M−1) to the stripped
four-point function G(x, y) could be written as

c12pc34pgp(x, y)

where the indices i = 1, 2, 3, 4 label the operators Oi on the external legs,
the index p labels the propagating primary operator Op. The function
gp(x, y) is the global block (for identical Oi), obeying the Casimir
equations of the global algebra

Ĉigp(x, y) = λigp(x, y), i = 1, 2

where λi are the eigenvalues, and

Ĉ1 = M2
0 − M1M−1,

Ĉ2 = 4L0M0 − L−1M1 − L1M−1 − M1L−1 − M−1L1.

Solution:

gp(x, y) = 22∆p−2x∆p−2∆(1 +
√
1− x)2−2∆pe

−ξpy
x
√

1−x+2ξ y
x (1− x)−1/2.
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Global block of multiplets: ξ ̸= 0 case
Different from the case of a singlet, the global block of a multiplet is not
the eigenfunction of the Casimir operators. The stripped four-point
functions can be expanded into

G(x, y) =
∑
Or

1

dr
f [Or]

where the propagating quasi-primary operator Or is a rank-r multiplet
with an overall normalization dr, and f [Or] satisfy the following Casimir
equations

(Ĉi − λi)
rf [Or] = 0, for i = 1, 2.

The solution reads

f [Or] =
r−1∑
s=0

Asg(s)∆r,ξr
.

Here g(s)∆r,ξr
, s = 0, · · · r − 1 make up the global block for the multiplet,

g(s)∆r,ξr
= ∂s

ξrg
(0)
∆r,ξr

where g(0)∆r,ξr
is the global block for the singlet.
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Global block expansion

It is more subtle to find the global block of multiplets for the ξ = 0 case,
due to the existence of null states.
BC, Peng-xiang Hao, Reiko Liu and Zhe-fei Yu, in progress

The global block expansion of the stripped four-point function in GCFT is

G(x, y) =
∑

Or|ξr ̸=0

1

dr

r−1∑
s=0

1

s!
∑

a,b|a+b+s+1=r
cacb∂

s
ξrg

(0)
∆r,ξr

+(ξ = 0 sector).

where q = y/x. and ca, cb are 3-pt coefficients.
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Conformal partial waves

One essential step in applying the inversion formula is to decompose the
four-point function into a set of complete basis of conformal group in the
Eulideanized space.
The complete basis consists of the normalizable eigenfunctions of the
Hermitian Casimir operators. Dobrev et.al. (1977)

As the group generated by GCA is not semi-simple, we cannot apply the
formal harmonic analysis for conformal symmetry group. One way is to
follow the discussion on the SYK model.J. Maldacena and D. Stanford 1604.07818, J. Murugan et.al.

1706.05362

We followed this approach in our previous study. BC et.al. 2011.11092

Alternatively, we have developed the shadow formalism to read Galilean
CPWs.
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As the group generated by GCA is not semi-simple, we cannot apply the
formal harmonic analysis for conformal symmetry group. One way is to
follow the discussion on the SYK model.J. Maldacena and D. Stanford 1604.07818, J. Murugan et.al.

1706.05362

We followed this approach in our previous study. BC et.al. 2011.11092

Alternatively, we have developed the shadow formalism to read Galilean
CPWs.
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Shadow transform in GCFT2

Since the 2d Galilean conformal group is isomorphic to the 3d Poincare group,
the “unitary principal series” representations could be identified as unitary
irreducible representations of the Poincare group.

For the unitary principal series E∆=1+is,ξ=ir, s, r ∈ R ̸=0, we define the
associated shadow representation as E∆̃=2−∆,ξ̃=−ξ, and denote the virtual
operator transforming in E∆̃,ξ̃ as Õ.

For an operator O lying on the unitary principal series E1+is,ir, we construct the
shadow transform S as

S[O](x, y) =
∫
R2

dx0dy0 ⟨Õ(x, y)Õ(x0, y0)⟩O(x0, y0)

=

∫
R2

dx0dy0 |x − x0|2∆−4e−2ξ
y−y0
x−x0 O(x0, y0),

which is an intertwining map between the two representations

S : E∆,ξ → E∆̃,ξ̃.

If the representations E∆,ξ and E∆̃,ξ̃ are UIRs, then by the Schur lemma S is an
isomorphism.
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OPE block from shadow transform

The OPE relation can be written as

O1(x1, y1)O2(x2, y2) =
∑

k
ck
12 D12k(x12, y12, ∂x2 , ∂y2)Ok(x2, y2)

The OPE block D encodes all the contributions of the derivative
operators.
In the shadow formalism, the OPE block with respect to the two virtual
operators should be

D123O3(x2, y2) = N123

∫
I
dx0dy0⟨O1(x1, y1)O2(x2, y2)Õ3(x0, y0)⟩O3(x0, y0)
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D123(x, y, ∂x, ∂y) = x−∆12,3eξ12,3
y
x

·
∑
n,m

2−n−mξ−m
3

n! (1+R)nP(∆32,1−1,∆31,2+n−1)
m (R)(x∂x+y∂y)

n(x∂y)
m,

where R = ξ1−ξ2
ξ3

and P(a,b)
n (z) is the Jacobi polynomial,

P(a,b)
n (z) = (a + 1)n

n! 2F1(−n, 1 + a + b + n; a + 1;
1

2
(1− z)).

Using the integral expression of the OPE blocks, we can construct the
s-channel conformal blocks as

G(s)
∆r,ξr

(xi, yi) = D12rD43r⟨O0(x2, y2)O0(x3, y3)⟩
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CPWs from shadow formalism

The s-channel unstripped conformal partial waves Ψ∆r,ξr(xi, yi) with
respect to four external virtual operators Oi ∈ E∆i,ξi , ξi = ξrRi and the
propagating virtual operator O ∈ E∆r,ξr , ξr ∈ iR ̸=0, can be constructed as

Ψ∆r,ξr(xi, yi) =

∫
R2

dx0dy0⟨O1O2O(x0, y0)⟩⟨Õ(x0, y0)O3O4⟩.

The stripped conformal partial waves Ψ∆r,ξr(x, y) are defined by factoring
out the kinematical factor K(s)

ψ∆r,ξr(xi, yi) = K(s)(xi, yi)ψ∆r,ξr(x, k).

They are combinations of two blocks,

ψ∆r,ξr = S(O3,O4; Õ∆r,ξr)g∆r,ξr(x, k) + S(O1,O2;O∆r,ξr)g2−∆r,−ξr(x, k),

where the prefactors are simply the shadow coefficients.
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GCPW expansion: ξ ̸= 0

A 4-point function admits global block expansion in which the expansion
coefficients contain the data of the theory.
It admits the GCPW expansion as well, where the expansion coefficients
can be obtained by using the inversion formula.
The two expansions are related by the contour deformation.

New features:
The multiplets appear as the multiple poles in the inversion function.

I(∆, ξ) = (Ψ∆,ξ,G) ∼ −
∑

∆m,ξl,k
Γ(k + 1)

22∆m−2

(ξ − ξl)k+1

P∆m,ξl,k+1

∆−∆m

where {∆m, ξl} are the physical poles.
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GCPW expansion: ξ ̸= 0

A 4-point function admits global block expansion in which the expansion
coefficients contain the data of the theory.
It admits the GCPW expansion as well, where the expansion coefficients
can be obtained by using the inversion formula.
The two expansions are related by the contour deformation.
New features:

The multiplets appear as the multiple poles in the inversion function.

I(∆, ξ) = (Ψ∆,ξ,G) ∼ −
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where {∆m, ξl} are the physical poles.
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GCA inversion function

(a) ∆-plane (b) ξ-plane

Figure: The contours in the ∆-plane and ξ-plane.
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Generalized free theory

The generalized free field theory(GFT) or Mean Field Theory (MFT)
plays an important role in analytic conformal bootstrap.
It provides the leading contribution to the correlators at large spin.
The data in GFT is the starting point for many computations.
Holographically it is the dual of free field theories in AdS.
By definition, the correlators in GFT are simply sums of products of
two-point functions.
The study of free field theory provides nontrivial check and guide to our
formalism. We consider two free field theories: GGFT and BMS free
scalar
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Generalized Galilean free theory (GGFT)

We may start from the generalized Galilean free field theory (GGFT)
which contains two fundamental scalar type operators O1,O2 with the
conformal weights and the charges ∆1, ξ1 and ∆2, ξ2 respectively.
We would like to study the spectrum and 3-pt coefficients in such GGFT.

Three different approaches
1. Operator construction: show “double trace” operator explicitly
2. Taylors expansion of 4-point function in terms of global block
3. Apply GCA inversion formula
They are consistent with each other.
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We may start from the generalized Galilean free field theory (GGFT)
which contains two fundamental scalar type operators O1,O2 with the
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Inversion function of GGFT

Consider the 4-pt function: ⟨OOOO⟩.
Inversion function:

I = (Ψ∆,ξ,G)

=

∞∑
n=0

n∑
k=0

1

−∆+ 2∆O + n
1

(ξ − 2ξO)k+1
Pt,inversion

n,k .

It shows explicitly
▶ the existence of double-twist operators ∆n = 2∆O + n.
▶ the spectrum of ξ is localized at 2ξO in the propagating channel.
▶ the multipole structure, suggesting the appearance of multiplets.
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BMS free scalarP.X.Hao et.al. 2111.04701, more in Wei Song’s talk!
The discussions before could be applied to the field theory with BMS3

symmetry. The BMS free scalar theory provides an example to see the
block expansion in terms of ξ = 0 multiplet.
The action of a BMS-invariant free scalar on a cylinder parameterize
by(σ, τ) with σ ∼ σ + 2π reads

S =
1

4π

∫
dσdτ (∂τφ)2 .

Two primary operators:

O0(x, y) ≡ i∂yφ(x, y), O1(x, y) ≡ i∂xφ(x, y)

They form a rank-2 multiplet: O = (O0,O1), with ξ = 0.
Vertex operators

Vα(x, y) ≡: eαϕ(x,y) :, α ∈ R or iR.

are singlets with
∆ = 0, ξ = −α

2

2
.
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2
.
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.
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OPE of the vertex operators:

Vα(x1, y1)Vβ(x2, y2) = e−αβ
y2−y1
x2−x1 Vα+β + · · · ,

Obviously
VαV−α ∼ V0.

In this case, one must consider the ξ = 0 multiplet.

We consider the following four-point function

⟨Vα(x1, y1)V−α(x2, y2)Vα(x3, y3)V−α(x4, y4)⟩ = eα
2 y12

x12 eα
2 y34

x34 +eα
2 y14

x14 eα
2 y23

x23 .

We use it to check the block expansion, and find consistent pictures.
BC, Peng-xiang Hao, Reiko Liu and Zhe-fei Yu, in progress
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Conclusions

In this work, we tried to establish a framework to do Galilean conformal
bootstrap.
Even though a Galilean conformal field theory is generically non-unitary,
bootstrap may still be viable.

1. We discussed the multiplets, and computed their conformal blocks.
2. We developed harmonic analysis of GCA, which paves the way for
further analytic study.
3. We studied GGFT in three different ways, and found consistent
picture.
4. We estimated the spectral density by using Hardy-Littlewood
tauberian theorem.
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Conclusions
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Even though a Galilean conformal field theory is generically non-unitary,
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picture.

4. We estimated the spectral density by using Hardy-Littlewood
tauberian theorem.
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On-going works

1. Developing shadow formalism
BC, Peng-xiang Hao, Reiko Liu and Zhe-fei Yu, to appear

2. ξ = 0 sector: CB, CPW, BMS free scalar,...
BC, Peng-xiang Hao, Reiko Liu and Zhe-fei Yu, in progress

3. Higher dimensional case
BC, Reiko Liu and Yu-fan Zheng, to appear
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Thanks for your attention!
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