

East Asia Joint Symposium 21/11/22-21/11/26

M2-branes & Quantum Curves

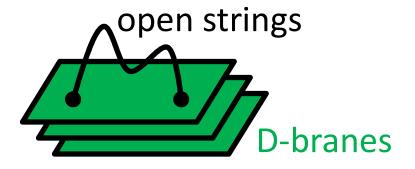
Sanefumi Moriyama

(Osaka City Univ / OCAMI / NITEP) [M 2020 JHEP] [M-Yamada 2021 SIGMA]

DOF for Branes

[Klebanov-Tesytlin 1998]

- DOF for
 - D3-branes = N^2
 - M2-branes = $N^{3/2}$
 - M5-branes = N^3



M2-branes

• Worldvolume Theories

= SUSY Chern-Simons Theories

[Aharony-Bergman-Jafferis-Maldacena 2008]

• Free Energy = $N^{3/2}$

[Drukker-Marino-Putrov 2009]

Hints for Another Viewpoint of M2-branes = Quantum Curves

Contents

1. Introduction

2. Matrix Models

(Review of A Classical Viewpoint)

3. Quantum Curves

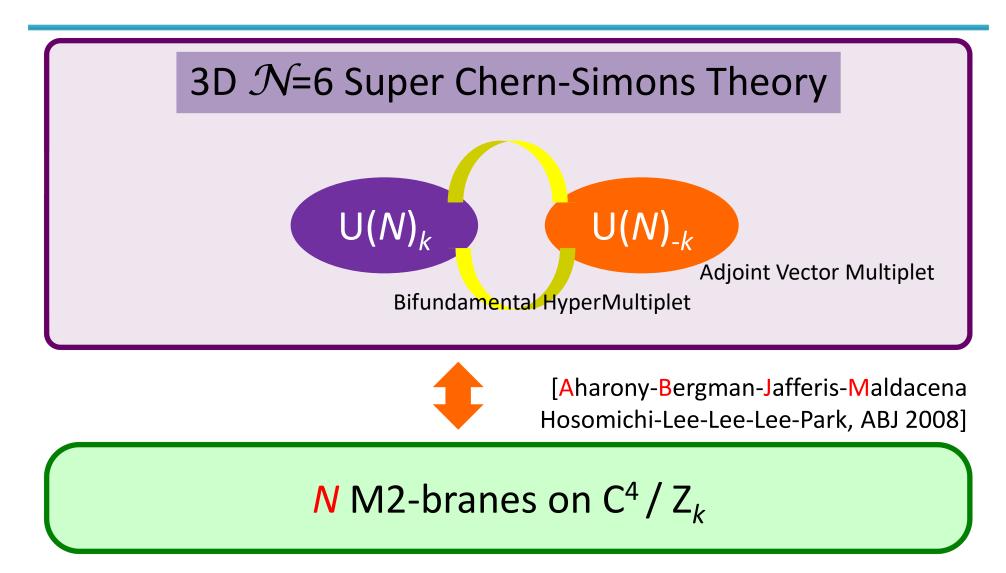
(An "Innovative" Viewpoint)

4. Discussions

Contents

- 1. Introduction
- 2. Matrix Models
- 3. Quantum Curves
- 4. Discussions

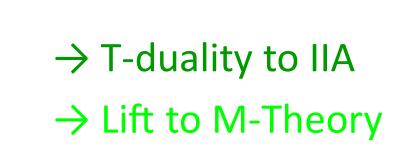
ABJM Theory



Brane Configuration in IIB

From Large Supersymmetries

N x D3-branes



NS5-brane (1,*k*)5-brane (IIB String Theory)

ABJM Matrix Model

Partition Function

- Defined by Infinite-Dim Path Integral (Cancellations between Bosons & Fermions in SUSY Theories)
- Localized to Finite-Dim Matrix Integration [Kapustin-Willett-Yaakov 2009]

ABJM : Gauge Group U(N) x U(N), Level k $Z_k(N) = \dots$

Expecting ...

Free Energy log $Z_k(N)$ Reproduces DOF $N^{3/2}$ (?)

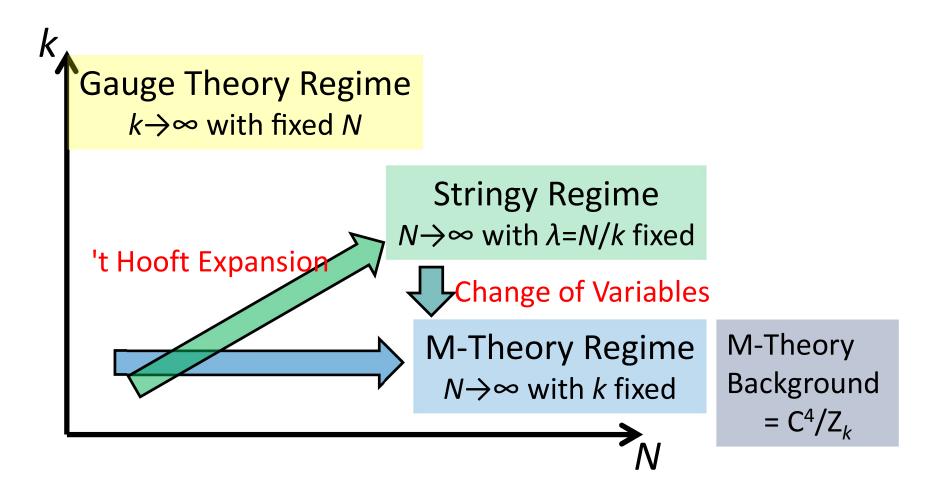
• 't Hooft Expansion

[Drukker-Marino-Putrov 2010]

 $\log Z_k(N) = (N/k)^{-1/2} N^2 \text{ (with 't Hooft Coupling N/k Fixed)}$ $= k^{1/2} N^{3/2} \text{ (with M-Theory Background k Fixed)}$

 \rightarrow DOF $N^{3/2}$ + ...Corrections...

Dissatisfaction



DOF N^{3/2} & Airy Function

• Summing Up Corrections

[Fuji-Hirano-M 2011]

$$\exp[N^{3/2} + ... \text{Corrections...}] = \text{Ai}(N) = \int \frac{d\mu}{2\pi i} e^{\frac{1}{3}\mu^3 - N\mu}$$

• Compared with Grand Potential $J_k(\mu)$

$$\boldsymbol{Z_k(N)} = \int \frac{d\mu}{2\pi i} e^{J_k(\mu) - N\mu}$$

Move to Grand Canonical Ensemble

• Grand Partition Function $\Xi_k(z)$

$$\Xi_k(z) = \Sigma_{N=0}^{\infty} z^N Z_k(N)$$
(*N* : Particle Number, *z* : Dual Fugacity)

Grand Potential

 $J_k(\mu) = \log \Xi_k(e^{\mu})$ ($\mu = \log z$: Chemical Potential)

Spectral Determinant

[Marino-Putrov 2011]

• Grand Partition Function = Fredholm Det $\Xi_k(z) = \text{Det}(1 + z H^{-1})$

with Spectral Operator

 $H = Q \mathcal{P}$ $Q = Q^{1/2} + Q^{-1/2}, \ \mathcal{P} = P^{1/2} + P^{-1/2}, \ Q P = e^{2\pi i k} P Q$ $(\ Q = e^{q}, P = e^{p}, [q,p] = i \hbar, \hbar = 2\pi k)$ (After Similarity Transformations, $H = Q + Q^{-1} + P + P^{-1}$

Reminiscent of Def. Eq. for P¹ x P¹, But Quantized)

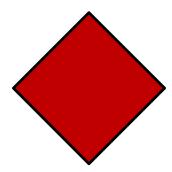
- Quantum-Mechanical Spectral Problem Spectral Operator H & Planck Const $\hbar = 2\pi k$
- Detecting M-Theory Regime (with fixed k)

From 't Hooft Expansion To WKB https://www.expansion

Phase Space Area

- Grand Potential from Phase Space Area $\partial_{\mu} [J_k(\mu)] = \partial_{\log z} [\log \Xi_k(z)]$ $= \partial_{\log z} [\log \operatorname{Det}(1 + z H^{-1})]$ $= \operatorname{Tr} (1 + H/z)^{-1} = \operatorname{Area}(H < z) / (2\pi\hbar)$
- Classically $(\hbar = 2\pi k \rightarrow 0)$

Area(H < z) = Area ($|q| + |p| = \mu$) = μ^2



Spectral Determinant

As long as Polynomial Spectral Operator
 H = H (Q, P)

Always

Area =
$$\mu^2$$

• After Integration

 $J_k(\mu) = \mu^3/3$ Always Airy Functions

Proposal

 If we regard Airy Functions or N^{3/2} as Characteristics of Multiple M2-branes,

> Multiple M2-branes are described by Spectral Operators (not Matrix Models)

Non-Perturbative Effects

- Airy Function = just a starting point
- Full Exploration of Non-Perturbative Effects

[Hatsuda-M-Okuyama 2012, 2013, Hatsuda-Marino-M-Okuyama 2013]

Finally, Non-Perturbative Effects

• Redefinition of Chemical Potential μ

[Hatsuda-M-Okuyama 2013]

Non-Perterbatively
 Free Energy of Topological Strings on Local P¹ x P¹
 [Hatsuda-Marino-M-Okuyama 2013]

From Geometrical Viewpoint

• Redefinition of Chemical Potential μ

[Hatsuda-M-Okuyama 2013]

(Mirror Map, A-Period of P¹ x P¹)

Non-Perterbatively

B-cycle

Free Energy of Topological Strings on Local P¹ x P¹

[Hatsuda-Marino-M-Okuyama 2013]

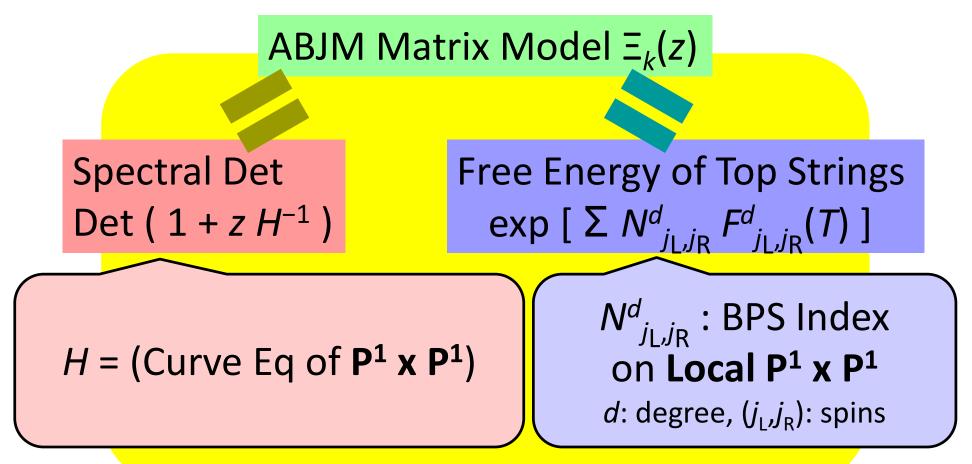
(Mostly B-Period of P¹ x P¹)

"Quantum Curves"

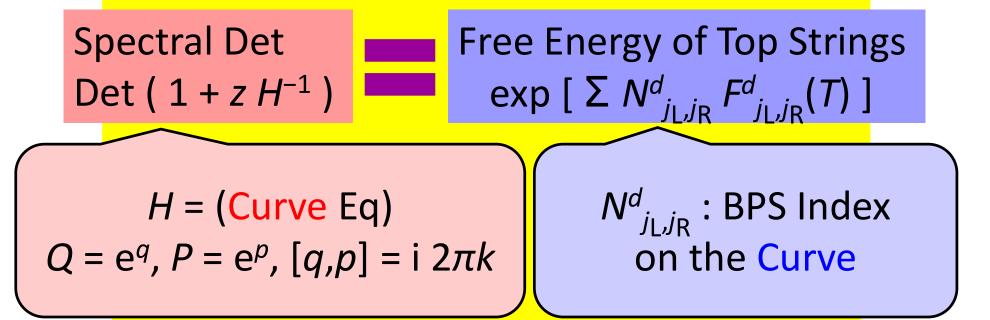
From Matrix Models To Curves

[Marino-Putrov 2011]

[Hatsuda-Marino-M-Okuyama 2013]



From Matrix Models To Curves



Take-Home Message

Multiple M2-branes are described by Spectral Theories/Topological Strings Correspondence

Bonus:

Symmetries of Exceptional Weyl Group E_n for Curves of Genus One (del Pezzo)

• However, Correpondence, Not Very Explicit

Contents

- 1. Introduction
- 2. Matrix Models
- 3. Quantum Curves
- 4. Discussions

Again,

Spectral Theories/Topological Strings Correspondence, for Curves of Genus One (del Pezzo, Classified by Exceptional Weyl Group ... E6, E7, E8)

个 Exceptional Weyl Group, Crucial on both ST & TS sides

Contents

- 1. Introduction
- 2. Matrix Models
- 3. Quantum Curves
 - 3-1. Spectral Theories
 - 3-2. Topological Strings
- 4. Discussions

E8 Quantum Curve

[Moriyama 2020]

All Quantum Curves of Genus One (del Pezzo), Especially Notoriously Complicated E8 Curve

$$\begin{split} &\frac{H}{\alpha} = q^{-3}Q^{3}P^{2} \\ &+q^{-2}Q^{2}P([2]_{q}F_{1}P + qF_{3}^{2}G_{2}^{3}H_{5}) \\ &+q^{-1}Q\left(\left(([3]_{q} - 1)F_{2} + F_{1}^{2}\right)P^{2} + q^{\frac{1}{2}}(F_{3}^{2}F_{1}G_{2}^{3}H_{5} + F_{2}G_{1} + F_{3}G_{2}H_{1})P + qF_{3}^{2}G_{2}^{3}H_{4}\right) \\ &+([2]_{q}F_{2}F_{1} + ([4]_{q} - [2]_{q})F_{3})P^{2} + (F_{3}^{2}F_{2}G_{2}^{3}H_{5} + [3]_{q}F_{3}G_{1} + F_{2}F_{1}G_{1} + F_{3}F_{1}G_{2}H_{1})P + \frac{E}{\alpha} + F_{3}^{2}G_{2}^{3}H_{3}P^{-1} \\ &+qQ^{-1}P^{-2}\left(P + q^{-\frac{1}{2}}g_{1}\right)\left(P + q^{-\frac{1}{2}}g_{2}\right) \\ &\times\left(\left(([3]_{q} - 1)F_{3}F_{1} + F_{2}^{2}\right)P^{2} + q^{-\frac{1}{2}}(F_{3}^{3}G_{2}^{3}H_{5} + F_{3}F_{1}G_{1} + F_{3}F_{2}G_{2}H_{1})P + q^{-1}F_{3}^{2}G_{2}^{2}H_{2}\right) \\ &+q^{2}Q^{-2}P^{-3}\left(P + q^{-\frac{3}{2}}g_{1}\right)\left(P + q^{-\frac{1}{2}}g_{1}\right)\left(P + q^{-\frac{3}{2}}g_{2}\right)\left(P + q^{-\frac{1}{2}}g_{2}\right)\left([2]_{q}F_{3}F_{2}P + q^{-1}F_{3}^{2}G_{2}H_{1}\right) \\ &+q^{3}Q^{-3}P^{-4}\left(P + q^{-\frac{5}{2}}g_{1}\right)\left(P + q^{-\frac{3}{2}}g_{1}\right)\left(P + q^{-\frac{1}{2}}g_{1}\right)\left(P + q^{-\frac{5}{2}}g_{2}\right)\left(P + q^{-\frac{3}{2}}g_{2}\right)\left(P + q^{-\frac{1}{2}}g_{2}\right)F_{3}^{2} \\ &\sum_{n=0}^{4}z^{n}F_{n} = \prod_{i=1}^{4}(1+zf_{i}), \qquad \sum_{n=0}^{2}z^{n}G_{n} = \prod_{i=1}^{2}(1+zg_{i}), \qquad \sum_{n=0}^{6}z^{n}H_{n} = \prod_{i=1}^{6}(1+zh_{i}) \end{split}$$

Progress to date

• Quantum Affine D5 Weyl Group (q-Painleve eq)

[Hasegawa 2011]

Classical Degenerate Curves (Seiberg-Witten curve)
 "E6 = Highest Toric Curve"

[Benini-Benvenuti-Tachikawa 2009, Kim-Yagi 2014]

• Quantum D5, E6, E7 Curves (q-Heun eq)

[Takemura 2018]

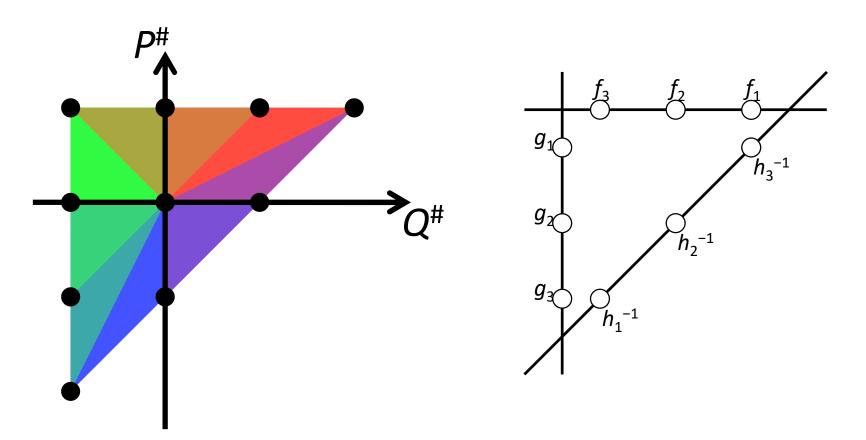
• Quantum E8 Curve & Affine E8 Weyl Group

[M 2020, M-Yamada 2021]

- Basically, Weyl Ordering of Operators
- For Degenerate Curves,
 Back&Forth Between "Triangle" & "Rectangle"
 → Step-by-Step Increasing Powers of q
 (DanDanBatake Structure)
 (段々畑≈棚田=千枚田=梯田=계단식전=Rice Terraces)

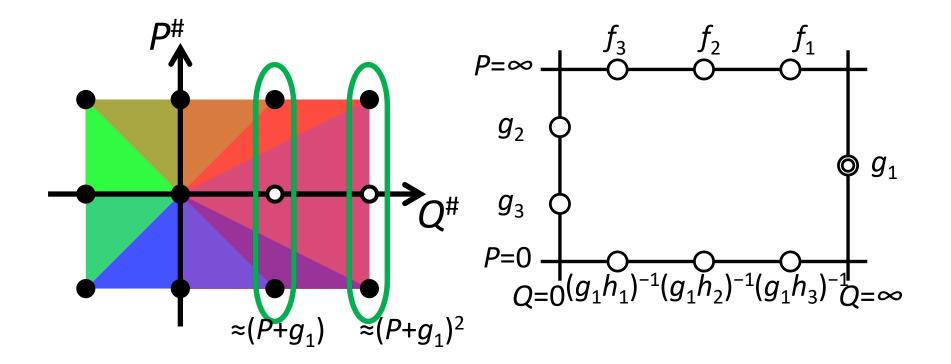
Quantum E6 Curve

Triangular Realization

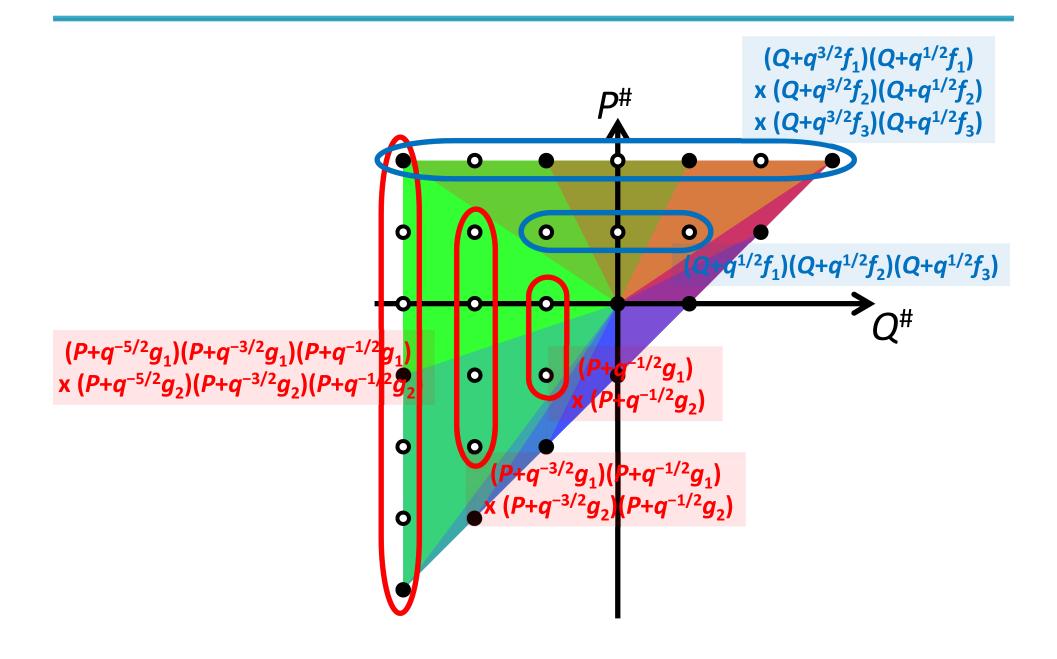


Quantum E6 Curve

Degenerate Rectangular Realization Via Similarity Transf. $Q' = P\left(P + q^{-\frac{1}{2}}g_1\right)^{-1}Q, \quad P' = P$



Quantum E8 Curve



Contents

- 1. Introduction
- 2. Matrix Models
- 3. Quantum Curves
 - 3-1. Spectral Theories
 - 3-2. Topological Strings
- 4. Discussions

E8 Mirror Map

Requiring Weyl Group Invariance,

- Coefficients for Airy Functions
- BPS Indices (= Mostly B-Period)

studied extensively [Huang-Klemm-Poretschkin 2013]

• Also, Mirror Map (= A-Period)

Multi-Covering Structure, Same Reps for Both A & B,

From E8 to Lower Ranks via Group Decomposition

(Known for BPS Indices, Valid for Mirror Map as well [Sakai, private communication]) [Furukawa-M-Sugimoto 2019, M 2020]

Conjecture

• If Redefining Chemical Potential by

$$\mu = \mu_* + \sum_{l=1}^{\infty} (-1)^l A_l e^{-l\mu_*}, A_l = \sum_{n|l} \frac{(-1)^{n+1}}{n} \alpha_{\frac{l}{n}}(q^n), \alpha_d(q) = \sum_{j,R} m_j^{d,R}(q^j + q^{-j}) \chi_R(q)$$

Indices for
Mirror Map

$$J(\mu) = J_P(\mu_*) + J_W(\mu_*) + J_M(\mu_*)$$

• Perturbative Part (P)

$$J_P(\mu) = C\mu^3/3 + B\mu + A$$

$$C = \cdots, B = \cdots (2nd \text{ Casimir})$$

Conjecture

Worldsheet Instanton (W-Series)

$$J_{W}(\mu) = \sum_{m=1}^{\infty} d_{m}(k, \boldsymbol{b}) e^{-m\frac{\mu}{k}}, d_{m}(k, \boldsymbol{b}) = (-1)^{m} \sum_{n|m} \frac{\delta_{m/n}(k/n, n\boldsymbol{b})}{n},$$

$$\delta_{d}(k, \boldsymbol{b}) = \frac{(-1)^{d-1}}{\left(2\sin\frac{\pi}{k}\right)^{2}} \sum_{j_{L}, j_{R}} \sum_{R} n_{j_{L}, j_{R}}^{d, R} \chi_{R}(e^{2\pi i \boldsymbol{b}}) \chi_{j_{L}}(e^{\frac{4\pi i}{k}}) \chi_{j_{R}}(1)$$

Membrane Instanton (M-Series)

$$J_{M}(\mu) = \sum_{m=1}^{\infty} \left(b_{l}(k, \boldsymbol{b}) \mu + c_{l}(k, \boldsymbol{b}) \right) e^{-l\mu}, b_{l}(k, \boldsymbol{b}) = \sum_{n|l} \frac{\beta_{l/n}(nk, \boldsymbol{b})}{n}, \dots,$$
$$\beta_{d}(k, \boldsymbol{b}) = \frac{(-1)^{d}d}{4\pi \sin \pi k} \sum_{j=1}^{\infty} \sum_{p=1}^{n} n_{j_{L}j_{R}}^{d,R} \chi_{R}(e^{2\pi i k \boldsymbol{b}}) \chi_{j_{L}}(e^{2\pi i k}) \chi_{j_{R}}(e^{2\pi i k})$$
$$Group \qquad Su(2)$$
$$Characters$$

Comment

- Kahler Parameters → Group Characters
 (Explicit Group Structure)
- Improving Previous Works

- Area of Dual Newton Diagram is 2nd Casimir Only After Shifting Chemical Potential Suitably

- Group Character Only After Identifying Overall Coeff. as Certain Combination of Parameters

[Mitev-Pomoni-Taki-Yagi 2014, Furukawa-M-Sugimoto 2019]

→ Overall Coefficient, Generally not Group-Inv

Comment

• Perturbative Quadratic Terms μ^2

 E_6

 E_7

[Gu-Klemm-Marino-Reuter 2015]

 $A_{2} \times A_{1} A_{1} \times U(1)$

U(1)

 A_0

Del Pezzo Geometry of Lower Ranks

Ambiguities from "u(1) Weyl Group"

 A_4

 D_5

More Results

[M-Yamada 2021]

- Affine E8 Weyl Group including *τ*-Variables (Easier in Rectangular Realization)
- Characterizing Transf. Rule for *τ*-Variables
 "Fundamental Polynomials"
- DanDanBatake Structure

= Non-Log Property of Difference Eq

• Bilinear Relations for *τ*-Variables

 \rightarrow *q*-Painleve E8 Eq (See [Kajiwara-Noumi-Yamada 2015])

Contents

- 1. Introduction
- 2. Matrix Models
- 3. Quantum Curves
- 4. Discussions

Summary

• Exploring M-Theory

From "Matrix Models" To "Quantum Curves" ! "Not-Necessarily-Lagrangian Theories"

Summary

"Spectral Theories/Topological Strings Correspondence"

[Grassi-Hatsuda-Marino 2014]

Spectral Determinant Det $(1 + z H^{-1})$ **Free Energy** (Topological Strings) $exp [\Sigma N^{d}_{j_{1},j_{R}} F^{d}_{j_{1},j_{R}}(T)]$

> Weyl Group Inv. for Both Sides [M 2020, M-Yamada 2021]

Questions

Quantum Curves Enjoy only Finite Weyl Groups, though *q*-Painleve Eqs Originate from Affine Weyl Group. Where is Affine Weyl Group in M2-branes?

> What are Symmetries of Quantum Curves Beyond Genus One?

Higher Dimensional Phase Space for *q*-Painleve Eq. What is Interpretation in M2-branes?

How about M5-branes?

Thank you for your attention.