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Gravitational Positivity Bounds and the Standard Model

Unitarity of scattering amplitudes is useful

 - to explore how to UV complete low-energy scattering amplitudes

    ex. weak bosons, Higgs boson, string amplitudes

 - to provide a necessary condition for an EFT to be UV completable

   → positivity bounds on low-energy scattering amplitudes

    ex. Higher derivative corrections to the Maxwell theory

       

       ※ positivity bounds imply  [Adams et al ’06]

ℒ = − 1
4 F2

μν + α1(FμνFμν)2 + α2(Fμν F̃ μν)2 + ⋯

α1,2 > 0



Gravitational Positivity Bounds and the Standard Model

When applied to gravitational theories, they would provide

a necessary condition for a gravitational EFT to be UV completable

→ a criterion to distinguish Swampland from Landscape

※ In this talk, I will discuss

 - how positivity bounds are generalized to gravitational theories

 - their implications for the Standard Model of particle physics

outline

1. Gravitational Positivity Bounds [Tokuda-Aoki-Hirano ’20]

2. Positivity in gravitational QED [Alberte-de Rham-Jaitly-Tolley ’20]

3. Positivity in gravitational Standard Model [Aoki-Loc-TN-Tokuda ’21]



1. Gravitational Positivity Bounds



Positivity bounds provide a necessary condition

for a low-energy scattering amplitude to be UV completable.

- In this talk, we are interested in four-photon scattering.

- For s-u symmetric helicity amplitudes in the forward limit,

  let us write the IR amplitude as .

  (Meantime, we ignore gravity and assume the above expansion)

- Then, positivity implies   as discussed in the next slides.

  ex. positivity of four-derivative couplings follows from .

ℳ(s, t = 0) =
∞

∑
n=1

a2ns2n

a2n > 0

a2 > 0



IR behavior: ℳ(s, t = 0) = a2s2 + & (s4)
a2 = ∮C0

ds
2πi

ℳ(s, t = 0)
s3

Consider an s-u crossing helicity sum of  scattering in the forward limit:γγ → γγ
ℳ = ℳ++++ + ℳ−−−− + ℳ+−+− + ℳ−+−+

Positivity Bounds (w/o gravity) [Adams et al ’06]

analytic structure of ℳ(s, t = 0)

s

s*−s*

C0



Positivity Bounds (w/o gravity) [Adams et al ’06]

analytic structure of ℳ(s, t = 0)
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s*−s*

IR behavior: ℳ(s, t = 0) = a2s2 + & (s4)
a2 = ∮C0

ds
2πi

ℳ(s, t = 0)
s3

Consider an s-u crossing helicity sum of  scattering in the forward limit:γγ → γγ
ℳ = ℳ++++ + ℳ−−−− + ℳ+−+− + ℳ−+−+

Deform the integration contour to rewrite it in the UV language:

a2 = 2
π ∫

∞

s*

ds
Imℳ(s, t = 0)

s3 + ∮C∞

ds
2πi

ℳ(s, t = 0)
s3 > 0

※ used the s-u symmetry and  

※ assumed  ( )  (cf. Froissart bound)

Disc ℳ(s, t = 0) = 2i Im ℳ(s, t = 0)
|ℳ(s, t = 0) | < |s |2 |s | → ∞



Positivity Bounds (w/o gravity) [Adams et al ’06]

analytic structure of ℳ(s, t = 0)
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s*−s*

IR behavior: ℳ(s, t = 0) = a2s2 + & (s4)
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ds
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Consider an s-u crossing helicity sum of  scattering in the forward limit:γγ → γγ
ℳ = ℳ++++ + ℳ−−−− + ℳ+−+− + ℳ−+−+

Deform the integration contour to rewrite it in the UV language:

a2 = 2
π ∫

∞

s*

ds
Imℳ(s, t = 0)

s3 + ∮C∞

ds
2πi

ℳ(s, t = 0)
s3 > 0

※ used the s-u symmetry and  

※ assumed  ( )  (cf. Froissart bound)

Disc ℳ(s, t = 0) = 2i Im ℳ(s, t = 0)
|ℳ(s, t = 0) | < |s |2 |s | → ∞

Positive because of unitarity! 



# To summarize, unitarity and analyticity imply the positivity bound:

 , where 

# It is convenient to rewrite it as [Bellazzini ’16, de Rham-Melville-Tolley-Zhou ’17, …]

 

 -  is calculable within the EFT

 -  monotonically decreases as  increases

a2 = 2
π ∫

∞

s*

ds
Imℳ(s, t = 0)

s3 > 0 ℳ(s, t = 0) = a2s2 + & (s4)

B(Λ) := a2 − 2
π ∫

Λ2

s*

ds
Imℳ(s, t = 0)

s3 = 2
π ∫

∞

Λ2
ds

Imℳ(s, t = 0)
s3 > 0

B(Λ)

B(Λ) Λ

Improved Positivity Bounds



Extension to gravitational theories



Gravitational Positivity Bounds [Tokuda-Aoki-Hirano ’20]

Assume the following Regge behavior of the imaginary part:

 (  : Reggeization scale).

Then, the bound on  reads [see Tokuda-Aoki-Hirano ’20 for details]

.

※ RHS depends on details of Regge amplitudes.

Imℳ(s, t) ≃ f(t)( s
M2s )

2+α′ t+α′ ′ t2+⋯
s > MRegge

a2

B(Λ) = a2 − 2
π ∫

Λ2

s*

ds
Imℳ(s, t = 0)

s3 > − 1
M2

Pl ( f′ (0)
f(0) − α′ ′ 

α′ )

For related developments,  see also Hamada-TN-Shiu ’18, Herrero-Valea et al ’20, 

Bellazzini et al’19, Alberte et al ’20, Arkani-Hamed et al ’20, Caron-Huot et al ’21.

In the forward limit, t-channel graviton exchange dominates over the  term:

- Careful study of non-forward amplitudes is needed to derive a bound on .

a2

ℳ(s, t → 0) ≃ − s2

M2
Plt

+
∞

∑
n=1

a2ns2n + &(t)

a2



2. Positivity in Gravitational QED
[Alberte-de Rham-Jaitly-Tolley ’20, see also Aoki-Loc-TN-Tokuda ’21]



Gravitational QED as an EFT

energy

0 γ, hμν

Ms

me e

Λ

Regge states

other states 
(if any)

Gravitational QED: ℒ = M2
Pl

2 R − 1
4 F2

μν − ψ̄( /D + me)ψ + ⋯

UV completable? 
Where is the cutoff?



Decomposition of scattering amplitudes

gravitational positivity bounds: 

B(Λ) := a2 − 2
π ∫

Λ2

s*

ds
Imℳ(s,0)

s3 > − 1
M2

Pl ( f′ (0)
f(0) − α′ ′ 

α′ ) =: ± 1
M2

PlM2

Implications for QED

In the previous slide, we derived

 - 

B(Λ) := c2(0) − 4
π ∫

Λ2

4m2
ds

Imℳ(s,0)
s3 > − $(1) ⋅ 1

M2
PlM2s

B(Λ) = BQED(Λ) + Bgrav(Λ) + BUV(Λ)

energy

0 γ

Ms

m e

Λ

Regge states

other states 
(if any)

- Decompose the  amplitude at IR as γγ → γγ ℳ = ℳQED + ℳGR + ℳUV 3 3
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FIG. 3. Feynman diagrams relevant for MWeak.

derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s)

(9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
QED ⇡
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FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.
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relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
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QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
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contribution to B(2)
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Pl and the dimensional analysis con-

cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
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only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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setup (see footnote 2). In either case, the typical size is
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.
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recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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If the first term is dominant, we have the same bound
as [25], ⇤ .
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into

account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.

All in all, the gravitational positivity implies the bound
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term is dominant and ↵UV ⇠ 1, we find ⇤ .
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =
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ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
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which is the one obtained in [18] from a slightly di↵erent
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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i (⇤) =
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Z 1
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ds0
ImAi(s0 + i✏)
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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p

meMPl/e,
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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ImAi(s0 + i✏)
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(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)
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(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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2
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. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding
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If the first term is dominant, we have the same bound
as [25], ⇤ .
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into

account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =
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Z 1
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ds0
ImAi(s0 + i✏)
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the
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at one-loop level is
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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for ⇤ � me. Regarding MGR, we have the tree and one-
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Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
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we obtain a nontrivial cuto↵ scale from (approximate)
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We remark that the result (11) can be used even in
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Pl), where m is the mass of the
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charged particle should provide the dominant contribu-
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GR throughout this letter.
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,
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scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
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bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
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GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
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We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
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cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
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as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
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we obtain a nontrivial cuto↵ scale from (approximate)
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We remark that the result (11) can be used even in
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cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-
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GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
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known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
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scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s) (9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
QED ⇡

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
(10)

3

�

� �

�

e

�

� �

�

hµ⌫

�

� �

�

hµ⌫

e

FIG. 2. Feynman diagrams relevant for MQED and MGR.

�

� �

�

W

�

� �

� �

� �

�

FIG. 3. Feynman diagrams relevant for MWeak.

derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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for ⇤ � me. Regarding MGR, we have the tree and one-
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Pl ) as shown in Fig. 2. The
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we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.
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GR throughout this letter.
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Cutoff scale of gravitational QED

Now the gravitational positivity bound reads
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Summary so far 

- gravitational positivity: .

- when applied to gravitational QED,

  this implies either a cutoff  GeV or a Regge amplitude w/

  too small to believe the bound??? massless limit is not allowed???

  → we extended the analysis to the Standard Model
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3. Positivity in Gravitational Standard Model
[Aoki-Loc-TN-Tokuda ’21]



Gravitational Standard Model

What to do is the same as the QED case except for

(A) there exist charged spin 1 particles (W bosons)

(B) hadrons may contribute if some of  is below the QCD scales, t, u

Gravitational Standard Model: 

 scattering: 

ℒ = ℒSM + M2
Pl

2 R + ⋯

γγ → γγ ℳ = ℳQED + ℳweak + ℳQCD + ℳGR + ℳUV

energy

0
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Λ

Regge states

other states 
(if any)



Weak sector analysis

- just like the QED case, we have .

- due to the spin 1 nature, W boson contributions grow faster than the QED case
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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GR > 0, yielding
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as [25], ⇤ .
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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ImAi(s0 + i✏)
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s) (9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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Z 1
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(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)
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GR > 0, yielding
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-
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GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into
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GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
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positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop
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Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.
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i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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Whereas B(2)
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GR approaches
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we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
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itivity bound (6). First, we can simply discard the
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as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
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Whereas B(2)
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GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
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We remark that the result (11) can be used even in
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contribution to B(2)
GR from charged particles should be
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cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
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Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
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We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.
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itivity bound (6). First, we can simply discard the
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above the cuto↵ scale ⇤. From the EFT perspective,
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,
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GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
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FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

It is also convenient to remark that the result (11)
can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into

account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is

+

+
≃ 2e4

π2m2
W

s ln m2
W

−s
+ (s ↔ − s) cf. ℳQED ∼ ln2 s

- we then find 

- on the other hand, weak boson loops are sub-dominant in 

Bweak(Λ) = 8e4

π2m2
WΛ2 > BQED(Λ) = 4e4

π2Λ4 (ln Λ
m − 1

4 )
BGR

gravitational positivity bounds: B(Λ) := a2 − 2
π ∫

Λ2

s*

ds
Imℳ(s,0)

s3 > ± 1
M2

PlM2



QCD sector analysis

- again, we have .

- while the amplitude on the r.h.s. is high-energy, the momentum transfer is small

  → t-channel exchange of hadrons is relevant

BQCD(Λ) = 4
π ∫

∞

Λ2
ds

ImℳQCD(s,0)
s3

3 3

�

� �

�

e

�

� �

�

hµ⌫

�

� �

�

hµ⌫

e

FIG. 2. Feynman diagrams relevant for MQED and MGR.

�

� �

�

W

�

� �

� �

� �

�

FIG. 3. Feynman diagrams relevant for MWeak.

derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.
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scattering in QED coupled to GR which was discussed
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can be used even in the later analysis beyond QED. In

general, the one-loop contribution to B(2)
GR from charged

particles should be proportional to e2/M2
Pl and the di-

mensional analysis concludes B(2)
GR / e2/(m2M2

Pl), where
m is the mass of the propagating particle in the loop.
Therefore, the lightest charged particle should provide

the dominant contribution to B(2)
GR. We thus take into

account the electron loop only to compute B(2)
GR through-

out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 , where
the dimensionless parameter ↵UV characterizes the size
of interactions at the scale ⇤ and satisfies |↵UV| . 1.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding
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+

↵UV
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>

22↵

45⇡m2
eM
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Pl
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If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is

ImℳQCD ≃ Im (P: Pomeroon, R: Reggeon)

- employing the Vector Meson Dominance (VDM) model,

ImℳQCD ≃ 25e4

16π2 ( s
GeV2 )

1.08
(See our paper for model-(in)sensitivity)

gravitational positivity bounds: B(Λ) := a2 − 2
π ∫

Λ2

s*

ds
Imℳ(s,0)

s3 > ± 1
M2

PlM2



Cutoff scale of gravitational SM

gravitational positivity with a single scaling :

→ this defines the cutoff of the gravitational SM  GeV.

M ∼ MRegge ≫ me

BQED(Λ) + BUV(Λ) + Bweak(Λ) + BQCD(Λ) > − BGR(Λ) ± 1
M2

PlM2

Λ ≃ 3 × 1016

4

⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
cuto↵ scale of QED coupled to GR. A new physics is
required below ⇤QED to satisfy the bound (6). Needless
to say, we already know the “new” physics, weak force
and strong force, in nature and these physics contribute
to the light-by-light scattering well below 108GeV.

Positivity in Electroweak Theory.— We then include
the weak sector into our consideration. While charged
lepton loops provide the same contribution as (10) (after
a replacement of me by the lepton masses), W bosons
yield a qualitatively di↵erent contribution because of the
spin-1 nature. In the high-energy limit (|s| � m2

W ), the
one-loop amplitude is5

AWeak ⇡
32↵2

m2
W

s ln
m2

W

�s
+ (s $ �s). (13)

In contrast to (9), the imaginary part of the amplitude
grows linearly in s in the high-energy limit. Accordingly,
the weak sector contribution to B(2) reads

B(2)
Weak ⇡

128↵2

m2
W⇤2

, (14)

which decreases as ⇤�2. Then, the W boson contribu-

tion B(2)
Weak eventually dominates over the fermion loop

contributions (10) at UV (see Fig. 5, where we plot B(2)
i

without using the high-energy approximation). The UV

physics e↵ect B(2)
UV / ⇤�4 also becomes subdominant in

the same regime. As a result, we obtain the cuto↵ which
is much larger than the one obtained in QED case,

⇤EW =

r
2880⇡↵

11

meMPl

mW
' 3.8⇥ 1013GeV . (15)

It is worth mentioning that after taking the high-
energy limit ⇤ � m, the fermion contribution (10) is
almost independent of the fermion mass and the mass
of spin-1 particle (W boson) appears in the denomina-
tor of (14). Therefore, we may continue to increase ⇤
even if new charged spin-1/2 or spin-1 states, namely
new physics, appear because they are subdominant in
B(2)(⇤). The result must be insensitive to inclusion of
new charged particles at UV regime as far as the theory
is weakly coupled6. On the other hand, QCD is not a
weakly coupled theory and, more importantly, QCD ac-
commodates mesons that are lighter than W bosons. The
result here must be insensitive to unknown UV physics
involving up to spin-1 particles but sensitive to QCD.

5 The one-loop diagrams are calculated by using the Mathematica
packages FeynArts [28] and FeynCalc [29], and the loop inte-
grals are evaluated by Package-X [30]. As a consistency check,
we confirm the desired crossing symmetries, the relation (8), and
the agreement with two di↵erent gauge choices, the Feynman-’t
Hooft gauge and the unitary gauge.

6 The inclusion of a charged spin-0 particle does not change the
situation as well. See [25] for the analysis in scalar QED.
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FIG. 5. The ⇤ dependence of B(2)
i where i = QED (red),

Weak (blue), and QCD (green), and the black dashed line

represents �B(2)
GR. The intersection between the solid line and

the dashed line determines the cuto↵ ⇤i.

Positivity in Standard Model.— We finally take into
account all the known physics and evaluate the cuto↵
scale of the SM by means of the gravitational positivity
bounds. Since (non-gravitational) QCD amplitudes have

to satisfy (8), we can compute B(2)
QCD from the imaginary

part of the forward limit amplitude ImAQCD at UV. A
nontriviality here is that in the forward limit, the momen-
tum transfer is soft and so the non-perturbative physics
of QCD contributes to ImAQCD even at UV via t-channel
diagrams. To compute the light-by-light scattering in the
forward limit, we use the vector meson dominance model
(VDM) and consider intermediate hadronic excitations,
which we call the VDM-Regge model following [31].

The relevant Feynman diagrams in the VDM-Regge
model are shown in Fig. 4. The photon is supposed to
transform into vector mesons Vi = ⇢,!,� before the col-
lision and the mesons undergo the hadronic processes ex-
changing Pomeron and Reggeon (P and R in Fig. 4). The
corresponding amplitude reads [31]

MQCD ⇡ 4

 
X

i

C2
�!Vi

!2

MV V!V V

0

@
X

j

C2
Vj!�

1

A
2

,

(16)
where C2

�!Vi
are the transition constants and the

hadronic interactions are supposed to be the universal
form. MV V!V V is composed of two contributions, the
Pomeron exchange and the Reggeon exchange, where the
former one provides the faster than linear growth in s
while the latter one is subdominant at UV. Also, the
prefactor 4 originates from the helicity sum. The imagi-

BQED(Λ) + BUV(Λ) ∼ Λ−4

Bweak(Λ) ∼ m−2
W Λ−2

BQCD(Λ) ∼ GeV−2.08Λ−1.92

|BGR(Λ) | ∼ m−2
e M2

Pl



A remark on EW theory w/o QCD

the same bound in the absence of the QCD sector reads 

   ⇄     ⇄  

- Possible explanation for the hierarchy between the EW scale and the Planck scale??

- Massless limit  is allowed if we take the limit  simultaneously

Bweak(Λ) > − BGR(Λ) mW

MPl
< 720

11 e
me

Λ Λ < 1440
11 ye sin θW MPl

me → 0 mW → 0
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⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
cuto↵ scale of QED coupled to GR. A new physics is
required below ⇤QED to satisfy the bound (6). Needless
to say, we already know the “new” physics, weak force
and strong force, in nature and these physics contribute
to the light-by-light scattering well below 108GeV.

Positivity in Electroweak Theory.— We then include
the weak sector into our consideration. While charged
lepton loops provide the same contribution as (10) (after
a replacement of me by the lepton masses), W bosons
yield a qualitatively di↵erent contribution because of the
spin-1 nature. In the high-energy limit (|s| � m2

W ), the
one-loop amplitude is5

AWeak ⇡
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In contrast to (9), the imaginary part of the amplitude
grows linearly in s in the high-energy limit. Accordingly,
the weak sector contribution to B(2) reads

B(2)
Weak ⇡
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which decreases as ⇤�2. Then, the W boson contribu-

tion B(2)
Weak eventually dominates over the fermion loop

contributions (10) at UV (see Fig. 5, where we plot B(2)
i

without using the high-energy approximation). The UV

physics e↵ect B(2)
UV / ⇤�4 also becomes subdominant in

the same regime. As a result, we obtain the cuto↵ which
is much larger than the one obtained in QED case,

⇤EW =

r
2880⇡↵

11

meMPl

mW
' 3.8⇥ 1013GeV . (15)

It is worth mentioning that after taking the high-
energy limit ⇤ � m, the fermion contribution (10) is
almost independent of the fermion mass and the mass
of spin-1 particle (W boson) appears in the denomina-
tor of (14). Therefore, we may continue to increase ⇤
even if new charged spin-1/2 or spin-1 states, namely
new physics, appear because they are subdominant in
B(2)(⇤). The result must be insensitive to inclusion of
new charged particles at UV regime as far as the theory
is weakly coupled6. On the other hand, QCD is not a
weakly coupled theory and, more importantly, QCD ac-
commodates mesons that are lighter than W bosons. The
result here must be insensitive to unknown UV physics
involving up to spin-1 particles but sensitive to QCD.

5 The one-loop diagrams are calculated by using the Mathematica
packages FeynArts [28] and FeynCalc [29], and the loop inte-
grals are evaluated by Package-X [30]. As a consistency check,
we confirm the desired crossing symmetries, the relation (8), and
the agreement with two di↵erent gauge choices, the Feynman-’t
Hooft gauge and the unitary gauge.

6 The inclusion of a charged spin-0 particle does not change the
situation as well. See [25] for the analysis in scalar QED.
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FIG. 5. The ⇤ dependence of B(2)
i where i = QED (red),

Weak (blue), and QCD (green), and the black dashed line

represents �B(2)
GR. The intersection between the solid line and

the dashed line determines the cuto↵ ⇤i.

Positivity in Standard Model.— We finally take into
account all the known physics and evaluate the cuto↵
scale of the SM by means of the gravitational positivity
bounds. Since (non-gravitational) QCD amplitudes have

to satisfy (8), we can compute B(2)
QCD from the imaginary

part of the forward limit amplitude ImAQCD at UV. A
nontriviality here is that in the forward limit, the momen-
tum transfer is soft and so the non-perturbative physics
of QCD contributes to ImAQCD even at UV via t-channel
diagrams. To compute the light-by-light scattering in the
forward limit, we use the vector meson dominance model
(VDM) and consider intermediate hadronic excitations,
which we call the VDM-Regge model following [31].

The relevant Feynman diagrams in the VDM-Regge
model are shown in Fig. 4. The photon is supposed to
transform into vector mesons Vi = ⇢,!,� before the col-
lision and the mesons undergo the hadronic processes ex-
changing Pomeron and Reggeon (P and R in Fig. 4). The
corresponding amplitude reads [31]
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where C2

�!Vi
are the transition constants and the

hadronic interactions are supposed to be the universal
form. MV V!V V is composed of two contributions, the
Pomeron exchange and the Reggeon exchange, where the
former one provides the faster than linear growth in s
while the latter one is subdominant at UV. Also, the
prefactor 4 originates from the helicity sum. The imagi-

BQED(Λ) + BUV(Λ) ∼ Λ−4

Bweak(Λ) ∼ m−2
W Λ−2

BQCD(Λ) ∼ GeV−2.08Λ−1.92

|BGR(Λ) | ∼ m−2
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Summary and prospects



Summary

1. Positivity bounds on low-energy scattering amplitudes provide

    a criterion for a low-energy EFT to be UV completable in the standard manner

 - provides a Swampland condition when applied to gravitational EFTs

2. Puzzles on positivity in gravitational QED [Alberte-de Rham-Jaitly-Tolley ’20]

 - implies a cutoff scale  GeV (too low to believe???)

 - implies that massless QED  is in the Swampland (sounds strange???)

 under the single scaling assumption .

3. Positivity in gravitational Standard Model [Aoki-Loc-TN-Tokuda ’21]

 - the cutoff scale is improved up to  GeV

 - massless limit  is allowed if we take  simultaneously

Λ ∼ 108

me → 0
M ∼ MRegge ≫ me

Λ ∼ 1016

me → 0 mW → 0



Future directions 

- How generic the single scaling assumption is? → detailed study of string amplitudes

  cf. [Alberte-de Rham-Jaitly-Tolley ’21] of the last week on graviton-photon scattering

- connections to other principles such as energy conditions, entropy bounds?

- phenomenological applications

  e.g., bounds on scalar potentials [TN-Tokuda ’21], dark matters, neutrinos, …

- possible implications for Higgs mechanism in string theory (brane recombination)?

!ank you!


