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Introduction

▶ Entanglement entropy in QFT:
• can be an order parameter in various

phase transitions [Calabrese-Cardy 04,

Kitaev-Preskill 06, Levin-Wen 06, · · · ]

• satisfies inequalities that constrain the
dynamics of QFT (C-theorems
[Casini-Huerta 04, 12, Casini-Test ́e-Torroba 17], ANEC
[Faulkner-Leigh-Parrikar-Wang 16] etc)

• probes non-local observables
(boundary/interface/defect entropy
[Nozaki-Takayanagi-Ugajin 12, Gaiotto 14, Estes-Jensen-O’

Bannon-Tsatis-Wrase 14, Jensen-O’Bannon 15,

Kobayashi-TN-Sato-Watanabe 18, Jensen-O’

Bannon-Robinson-Rodgers 18, · · · ])
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Goal of this talk
▶ We will examine pseudo entropy [Nakata-Takayanagi-Taki-Tamaoka-Wei 20],

which measures quantum entanglement in a time-dependent
system: |ψ⟩ −−−−−−−−→

time evolution
|φ⟩

• Entanglement entropy = von Neumann entropy of ρA :

TrA
[
ρA ÔA

]
= ⟨ψ| ÔA |ψ⟩ , ρA = TrB [|ψ⟩ ⟨ψ|]

• Pseudo entropy = von Neumann entropy of τψ|φA :

TrA
[
τ
ψ|φ
A ÔA

]
=

⟨φ| ÔA |ψ⟩
⟨φ|ψ⟩ , τ

ψ|φ
A ≡ TrB

[
|ψ⟩ ⟨φ|
⟨φ|ψ⟩

]

▶ We will address the following in simple setups:
• How does it depend on topological data in TFT?
• How different/similar is it to other measures?
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Entanglement entropy

Divide a system to A and B = Ā: Htot = HA ⊗HB

Entanglement entropy

SA = −TrA [ρA log ρA]

▶ The reduced density matrix:

ρA ≡ TrB[ ρtot ]

▶ For a pure ground state |Ψ⟩:

ρtot = |Ψ⟩ ⟨Ψ|

t

A
B
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Pseudo entropy
Pseudo Rényi entropy [Nakata-Takayanagi-Taki-Tamaoka-Wei 20]

S(n)
(
τ
ψ|φ
A

)
≡ 1

1− n
log TrA

[(
τ
ψ|φ
A

)n]
▶ τ

ψ|φ
A : the reduced transition matrix for two states |ψ⟩ , |φ⟩:

τ
ψ|φ
A ≡ TrB

[
τψ|φ

]
, τψ|φ ≡ |ψ⟩ ⟨φ|

⟨φ|ψ⟩

▶ τ
ψ|φ
A is not hermitian in general, so pseudo entropy can be

complex:

S(n)
(
τ
ψ|φ
A

)
=

[
S(n)

(
τ
ψ|φ
A

)]∗
▶ Reduces to Rényi entropy when ψ = φ
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Inner product ⟨φ|ψ⟩

▶ Let Oψ be an operator corresponding to |ψ⟩, then

⟨Φ0|ψ⟩ =
∫
Φ|Σ=Φ0

DΦ Oψ e
−I[Φ] = Oψ

Φ0
Σ

▶ The inner product can be seen as a partition function with
operator insertions:

Z
[
M1;Oψ,O†

φ

]
≡ ⟨φ|ψ⟩ =

∫
DΦ0 ⟨φ|Φ0⟩ ⟨Φ0|ψ⟩

=

Oψ

O†
φ
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Transition matrix
▶ The unnormalized transition matrix:

τ̃
ψ|φ
A ≡ TrB [|ψ⟩ ⟨φ|] =

∫
D[Φ0|B] ⟨φ|Φ0⟩ ⟨Φ0|ψ⟩ =

Oψ

O†
φ
AB B

▶ Gluing n copies of τ̃ψ|φA to make the partition function on
Mn:

Z
[
Mn;Oψ,O†

φ

]
≡ TrA

[(
τ̃
ψ|φ
A

)n]

=

Oψ

O†
φ

Oψ

· · ·
Oψ

O†
φ O†

φ
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Path integral representation of pseudo Rényi entropy

Pseudo Rényi entropy

S(n)
(
τ
ψ|φ
A

)
≡ 1

1− n
log

Z
[
Mn;Oψ,O†

φ

]
Z
[
M1;Oψ,O†

φ

]n
▶ Z

[
Mn;Oψ,O†

φ

]
: the partition function on Mn

with operators Oψ,Oφ inserted

▶ This representation makes manifest the property:

S(n)
(
τ
ψ|φ
A

)
= S(n)

(
τ
ψ|φ
B

)
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Chern-Simons theory and modular S-matrix
▶ Chern-Simons theory on a 3d manifold M with gauge group

SU(N) and level k:

ICS[A] = −i k
4π

∫
M

tr
[
A ∧ dA+

2

3
A ∧A ∧A

]

▶ Wilson loops as a topological invariant observable:

WR[A] = trR P exp
(∫

C
A

)

▶ Partition functions are given by the modular S-matrix [Witten 89]:

Z
[
S3
]
= S0

0

Z
[
S3;Ri

]
= S0

i
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Pseudo entropy in Chern-Simons theory

▶ In 3d SU(N) Chern-Simons theory with level k, consider a
state with four quasi-particle excitations:

A
B

j j

j̄ j̄

▶ A pair of excitations in conjugate representations are
connected by a Wilson line in Rj representation

j j̄

WRj
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Example: two j’s in A

|ψ⟩ =

A B
j

j

j̄

j̄

|φ⟩ =

A B
j

j

j̄

j̄

▶ The resulting transfer matrix:

τ̃
ψ|φ
A =

A Ā
j

j

j̄

j̄

B3

⇒ ⟨φ|ψ⟩ =

Rj

S3
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Example: two j’s in A
▶ Gluing n copies of τ̃ψ|φA gives n Wilson loops:

TrA


A Ā
j

j

j̄

j̄

B3

· · ·

A Ā
j

j

j̄

j̄

B3


=

n crossings

S3

▶ Pseudo entropy calculated by analytically continuing odd n:

S
(
τ
ψ|φ
A

)
= logS0

0 + log
[
[N ]

[2]

]
+ log

[
q

1
2 [N + 1]− q−

1
2 [N − 1]

]
− i π

N + k

q
1
2 [N + 1] + q−

1
2 [N − 1]

q
1
2 [N + 1]− q−

1
2 [N − 1]

(q = e2πi/(N+k)) 13/21



Pseudo entropy in CFT2

For A a single interval in CFT2, ∃conformal map to a cylinder
[Hislop-Longo 82, Casini-Huerta-Myers 11]

A+

A−

cL cR

φ

ψ

conformal map
cL cR

A−

A+

0

2π

τ

ψ

φ

▶ τ ∼ τ + 2π, no translation invariance along τ
▶ cL,R: UV cutoffs around the entangling surface ∂A
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Interface entropy
▶ A closely related measure is the entanglement entropy across

a conformal interface I (interface entropy SI
A) [Sakai-Satoh 08,

Gutperle-Miller 15, 17, Brehm-Brunner 15, Brehm-Brunner-Jaud-Schmidt-Colinet 15, Wen-Wang-Ryu 17,

Chen-Hung-Li-Wan 18, Lou-Shen-Hung 19, Brehm 20]

I

A+

A−

φ ψ

conformal map

A−

I

I

A+

ψ

φ

ψ

τ

2π

3π
2

π
2

0

▶ For states |ψ⟩ , |φ⟩ glued along I, the reduced density matrix
ρIA for SI

A can be obtained by

τ
ψ|φ
A −−−−−−−→

τ→ τ+π/2
ρIA
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Relation between pseudo entropy and interface entropy

ψ

φ

A
(1)
−

A
(1)
+

A
(2)
−

A
(n)
−

A
(n)
+

τ

2πn

2π(n− 1)

2π

0

Pseudo entropy

τ

2πn

2π(n− 1)

2π

0

(4n−1)π
2

(4n−3)π
2

(4n−5)π
2

5π
2

3π
2

π
2

Interface entropy

Relation between pseudo and interface entropy in CFT2

S
(
τ
ψ|φ
A: interval

)
= SI

A: half-line in CFT2
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Similar relation in QFTd≥2

Taking the entangling surface to be a hyperplane in flat space:

Aτ

φ

ψ

Pseudo entropy

Aτ

φ ψ

Interface entropy

Relation between pseudo and interface entropy in QFTd≥2

S
(
τ
ψ|φ
A

)
= SI

A for ∂A : {x0 = x1 = 0}
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Left-right entanglement entropy (LREE)
▶ In boundary CFT2, LREE can be defined as the von Neumann

entropy of the reduced density matrix for the left sector [Pando

Zayas-Quiroz 14, Das-Datta 15]:

ρψL ≡ 1

⟨ψ|ψ⟩
TrR [|ψ⟩ ⟨ψ|]

▶ Any boundary state |ψ⟩ satisfying the gluing condition(
Ln − L̄−n

)
|ψ⟩ = 0

can be expanded by the Ishibashi states [Ishibashi 89]:

|ψ⟩ =
∑
i

ψi |i⟩⟩ , ⟨⟨i|j⟩⟩ = δij S0
i

N.B. Boundary states are non-normalizable
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Left-right pseudo entropy (LRPE)
▶ Pseudo entropy analogue of LREE can be defined with the

transition matrix for two boundary states |ψ⟩ , |φ⟩:

τ
ψ|φ
L ≡ 1

⟨φ|ψ⟩
TrR [|ψ⟩ ⟨φ|]

▶ Put a theory on a semi-infinite cylinder of circumference ℓ and
regularize states by evolving along the imaginary time:

|ψ⟩ → e−ϵH |ψ⟩ , H =
2π

ℓ

(
L0 + L̄0 −

c

12

)
▶ LRPE takes a complex value in general:

S
(
τ
ψ|φ
L

)
=
πcℓ

24 ϵ
−

∑
i Si

0 ψi φ
∗
i log(ψi φ∗

i )∑
i Si

0 ψi φ∗
i

+ log
[∑

i

Si0 ψi φ∗
i

]
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Example

▶ Consider LRPE for the states:

|ψ⟩ = |a⟩ , |φ⟩ = |i⟩⟩

where |a⟩ is a Cardy state [Cardy 89]

|a⟩ =
∑
i

Sai√
S0

i
|i⟩⟩

▶ LRPE becomes

S
(
τ
ψ|φ
L

)
=
πcℓ

24 ϵ
+ log Si0

which is independent of the choice of the Cardy state |a⟩ as
long as it overlaps with the Ishibashi state |i⟩⟩
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Summary and future directions

▶ A few analytic results for pseudo entropy obtained in
topological and conformal field theories

▶ Non-trivial relation between pseudo and interface entropy
derived

▶ Left-right pseudo entropy in BCFT introduced

▶ Supersymmetric generalization like supersymmetric Rényi
entropy [TN-Yaakov 13]?

▶ Any application to constrain QFT dynamics?

21/21


	Introduction
	Pseudo entropy in QFT
	Chern-Simons theory
	Relation to interface entropy in CFT
	Left-right pseudo entropy in boundary CFT

