On compatibility between conformal symmetries and continuous higher form symmetries

Yunqin Zheng

Kavli IPMU, ISSP, U.Tokyo

arXiv:2108.00732, Yasunori Lee, Y.Z. Phys.Rev.D. 104 (2021) 8, 085005

Nov.22nd, 2021

Yunqin Zheng Kavli IPMU, ISSP, U.Tokyo a:On compatibility between conformal symmetry

Global symmetries and 't Hooft anomalies

impose strong constraints on dynamics of quantum many body systems.

A well known example: A 1 + 1d spin chain with SO(3) and translation symmetry and spin $\frac{1}{2}$ per unit cell \Rightarrow can not be symmetric trivially gapped.

[Lieb,Schultz,Mattis, 1961]

In general, 't Hooft anomalies imply no symmetric trivially gapped ground state.

Question: Are there more implications on dynamics?

Dynamics are often characterized by RG fixed points.

Gapped: (IR fixed points)

- Trivially gapped = invertible TQFT;
- TQFT with anyons
- Multiple vacua (discrete SSB)

Gapless: (UV and IR fixed points)

- Conformal field theory;
- Scale invariant but non-conformally invariant.

Constraint on gapped phases:

Not all anomalies can be saturated by symmetric gapped TQFTs: Symmetry enforced gaplessness. [Wang,Senthil, 1401.1142] [Cordova,Ohmori, 1910.04962, 1912.13069]

- Two free Dirac fermions in (2+1)dcan not be symmetrically gapped preserving $SU(2) \times T$.
- SU(N) QCD with 1 adjoint fermion in (3 + 1)d can not be symmetrically gapped preserving Z_{2N} chiral symmetry.

This talk: constraint on gapless theories:

Question:

Unitary Conformal field theory $\stackrel{?}{\longleftrightarrow}$ Continuous higher form symmetry

Answer:

not always compatible.

Yunqin Zheng Kavli IPMU, ISSP, U.Tokyo a: On compatibility between conformal symmetr

Unitary Conformal field theory:

- Conformal symmetry generator: $P_{\mu}, M_{\mu\nu}, D, K_{\mu}$
- Local operator *O* and states |*O*⟩ labeled by scaling dimension Δ_{*O*},
 Lorentz quantum number (spin) h_{*O*}
- States organized into conformal tower: primary state: $|O\rangle$, $K_{\mu}|O\rangle = 0$ descendant state: $P_{\mu}|O\rangle$, $P_{\mu}P_{\nu}|O\rangle$, ...
- Unitarity: all states have non-negative norm $||PP|O\rangle||^2 \ge 0$ Unitary bound: $\Delta_O \ge f(h_O)$ Completely determined. [Minwalla, hep-th/9712074]

Continuous higher form symmetry:

- Continuous *p*-form symmetry G^(p)
 Conserved current J^(p+1), d * J^(p+1) = 0
- Scaling dimension: Δ_J = d p 1 Lorentz quantum number is also determined.

	d = 3		d = 4		d = 5		d = 6	
	Δ_J	$[h]_J$	Δ_J	$[h_1, h_2]_J$	Δ_J	$[h_1, h_2]_J$	Δ_J	$[h_1, h_2, h_3]_J$
$p=0,J^{\mu}$	2	[1]	3	$[\frac{1}{2}, \frac{1}{2}]$	4	[1, 0]	5	[1, 0, 0]
$p=1, J^{\mu\nu}$	1	[1]	2	$[1,0]\oplus [0,1]$	3	[1,1]	4	[1, 1, 0]
$p=2, J^{\mu\nu\rho}$			1	$[\frac{1}{2}, \frac{1}{2}]$	2	[1,1]	3	$[1,1,1]\oplus [1,1,-1]$
$p = 3, J^{\mu\nu\rho\sigma}$					1	[1, 0]	2	[1, 1, 0]
$p=4, J^{\mu\nu\rho\sigma\eta}$							1	[1, 0, 0]

Combining

- From unitary CFT: Unitary bound: Δ_J ≥ f(h_J)
- From higher form symmetry: Scaling dimension: $\Delta_J = d - p - 1$

They are not always compatible!

	d = 3	d = 4	d = 5	d = 6
p = 0	1	\checkmark	1	\checkmark
p = 1	×	\checkmark : if chiral \checkmark : otherwise	1	\checkmark
p=2		×	×	\checkmark : if chiral \checkmark : otherwise
p = 3			×	×
p = 4				×

Theorem:

A unitary CFT cannot have the "forbidden" *p*-form symmetry (X) whose conserved current is the conformal primary operator.

	d = 3	d = 4	d = 5	d = 6
p = 0	1	\checkmark	1	\checkmark
p = 1	×	\checkmark : if chiral \checkmark : otherwise	1	\checkmark
p=2		×	×	\checkmark : if chiral \checkmark : otherwise
p=3			×	×
p=4				×

N.B. When considering supersymmetry, in 6d, 1-form symmetry is also forbidden. [Cordova,Dumitrescu,Intriligator, 1612.00809] If a theory has a forbidden *p*-form symmetry (X), its RG fixed points should have either of the following scenarios:

- **()** a unitary CFT, but the p-form symmetry G is decoupled.
- e scale invariant but not conformal, and the *p*-form symmetry G may or may not decouple.
- **8** non-unitary.
- **4** gapped TQFT (including a trivial theory).

Free compact scalar

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2, \qquad \phi \sim \phi + 2\pi R$$

Symmetry:

- $U(1)^{(0)}$ electric shift symmetry
- $U(1)^{(d-2)}$ topological symmetry. (Forbidden (X) when $d \ge 3$.)

Dynamics:

• UV fixed point: $R \rightarrow 0$. $U(1)^{(0)}$ is trivial, $U(1)^{(d-2)}$ survives. Can not be a unitary CFT! Scale invariant but non-CFT!

 IR fixed point: R → ∞. U(1)⁽⁰⁾ survives, U(1)^(d-2) is trivial. It is a CFT of non-compact scalar. [EI-Showk,Nakayama,Rychkov, 1101.5385] [Nakayama, 1302.0884] Free Maxwell theory:

$$\mathcal{L} = -\frac{1}{8\pi^2} F \wedge *F, \qquad A \sim A + \frac{2\pi\eta}{R}$$

Symmetry:

- $U(1)^{(1)}$ electric shift symmetry. (Forbidden (X) when d = 3)
- $U(1)^{(d-3)}$ topological symmetry. (Forbidden (X) when $d \ge 5$.)

Dynamics:

- d = 3: UV: Scale inv, non-CFT; IR: non-compact scalar CFT.
- *d* = 4: CFT.
- *d* ≥ 5:
 - UV fixed point: $R \to \infty$. $U(1)^{(1)}$ is trivial, $U(1)^{(d-3)}$ survives. Can not be a unitary CFT! Scale invariant but non-CFT!
 - IR fixed point: R → 0.
 Can not rule out unitary CFT.

Four derivative Maxwell theory in 6d

$$\mathcal{L} = \frac{1}{4e^2} G_{\mu\nu} \nabla^2 G^{\mu\nu}$$

Symmetry:

- $U(1)^{(1)}$ electric shift symmetry
- $U(1)^{(3)}$ topological symmetry. (Forbidden (X)!)

Dynamics:

• It was shown to be CFT. [Tseytlin,1310.1795] [Giombi,Klebanov,Tarnopolsky,1508.06354] • Forbidden symmetry $U(1)^{(3)}$ enforces non-unitary. Supported by $\langle T_{\mu\nu} T_{\mu\nu} \rangle < 0.$ [Giombi,Tarnopolsky, Klebanov,1602.01076] A variant of QED_6

$$\mathcal{L} = \frac{1}{4e^2} G_{\mu\nu} \nabla^2 G^{\mu\nu} + \sum_{i=1}^{N_f} \overline{\psi}_i (\partial \!\!\!/ - i \!\!\!/ A) \psi_i.$$

[Giombi,Klebanov,Tarnopolsky,1508.06354]

Nov.22nd. 2021

14/15

Symmetry:

• $U(1)^{(3)}$ topological symmetry. (Forbidden (X)!)

Dynamics:

- Beta function: $\beta_e = -\frac{\epsilon}{2}e \frac{N_f}{120\pi^3}e^3 + \mathcal{O}(e^5)$
- UV: fermion decouples from gauge field. non-unitary CFT ⊗ free fermion
- IR: RG can be unitary when N_f is sufficiently large.

Summary:

- A unitary CFT cannot have the "forbidden" *p*-form symmetry (**X**) whose conserved current is the conformal primary operator.
- Nontrivial dynamical consequences.
- Streamlines previous discussions on scale invariant but non-conformal invariant theories from the (higher form) symmetry point of view.