Aspects of 5d Seiberg-Witten Theories on \mathbb{S}^1

Qiang Jia

KIAS (2111.09448, Qiang Jia, Piljin Yi)

5D N = 1 supersymmetric field theory

Coulomb branch

- Symmetric breaking at generic points : $G \rightarrow U(1)^r$
- Parametrized by real scalars ϕ^i $(i = 1, \dots, r)$
- IMS* prepotential $\mathcal{F}_{IMS}(\phi^i)$

Example: SU(2)-theory

Prepotential:

$$\mathcal{F}_{\rm IMS}(\phi) = \mu_0 \phi^2 + \frac{4}{3} \phi^3 \quad (\mu_0 \equiv 8\pi^2/g_5^2) \tag{1}$$

Coulomb branch:

 $\phi=0 \label{eq:phi}$ Symmetry resotred

^{*}Intriligator, Morrison, Seiberg 1997

String/M-theory realization

Electric BPS particles

Magnetic BPS string

D3-brane wrapping common face

M5-brane wrapping 4-cycle

\mathbb{S}^1 Compactification

 $\blacktriangleright \phi \to \phi + iA_5$

- Prepotential receive instanton corrections
- magnetic string wrapping $\mathbb{S}^1 \to \text{monopoles}$
- Wall-crossing is turning on

Wall-crossing

- BPS particles : $M = |Z(\phi)|$
- ► $Z = Z_1 + Z_2, M \le M_1 + M_2$
- Marginal stability wall : $Z_1 \parallel Z_2$
- $M \leftrightarrow M_1 + M_2$ may happen when crossing the wall

Motivation

Complicate wall-crossing pattern in compactified theory:

Various kinds of particles

Electric Magnetic Instanton KK $Z \sim n_e \cdot a + n_m \cdot ia_D + n_I \cdot \mu_0 + n_k \cdot iR_5^{-1}$

• Whenever $Z_1 \parallel Z_2$, there could be a wall

On the other hand, there is no wall-crossing in 5D theory

- No wall-crossing in particle sense
- Schwinger pairing between particles are zero

How does the wall-crossing turn itself off in $R_5 \rightarrow \infty$ limit?

Three kinds of wall-crossing

 $Z \rightarrow Z_1 + Z_2$

At least one of the two constituents Z_1, Z_2 must carry a magnetic charge

Case 1: Z is non-magnetic, Z_1 and Z_2 are magnetic

*Z*_{magnetic} ~ *iR*₅*T*_{magnetic} should remain finite when *R*₅ → ∞
 *T*_{magnetic} → 0

The marginal stability wall must collapse to the boundary of Coulomb branch, where magnetic strings become tensionless

Strategy

Exact prepotential :

$$\frac{\partial^3 F_{\text{exact}}(t^i, v^a)}{\partial t^i \partial t^j \partial t^k} = S_i \cdot S_j \cdot S_k + \sum_{\eta \in H_2(X)} \frac{q^\eta}{1 - q^\eta} N_\eta (S_i \cdot \eta) (S_j \cdot \eta) (S_k \cdot \eta)$$

- We use the exact prepotential to track the behaviour of Coloumb branch and marginal stability wall
- ▶ We analyse F0, F1 and dP₂ geometry separately

F0 example $(\mu_0 > 0)$ Coulomb branch:

$$\phi = 0$$

g⁻²_{4,eff} ~ R₅ · μ₀ ≫ 1, Λ_{QCD} ≫ Λ_{UV} ~ 1/R₅
At ~ Λ_{QCD}, there exists a wall:

(2,0) W-Bosons → (0,1) monopole + (2,-1) dyon
it shrinks to the φ = 0 endpoint when R₅ → ∞.

For Z_{mag} ~ iR₅φ(φ + μ₀) to be finite, φ ~ 1/R₅ → 0

Case 2: Z and Z_1 magnetic, Z_2 is non-magnetic

Coulomb branch (locally) :

- The wall emanates form the point $Z_2 = 0$
- A flavor becomes massless
- $\blacktriangleright Z_2 \equiv Z_f = \pm(\phi + iA_5) + \mu_f$
- The wall extends in the circular direction

$$\mathbb{R}_{1,4} \qquad \overbrace{\phi = \mu_f}$$

The wall collapse to a point in $R_5 \rightarrow \infty$ limit.

Discontinuity

 dP_2 example (SU(2) with one flavor):

Flop transition

- $\phi > \mu_f$: monopole carries the Jackiw-Rebbi zero mode[†]
- Discontinuity at $\phi = \mu_f$

[†]Jackiw,Rebbi 1976

"Wall-crossing" of magnetic string

- Magnetic string : M5-brane wrapping 4-cycle
- ► 6d (0,2) scft \rightarrow 2d (0,4) scft[‡]
- The elliptic genus of the magnetic string changes:

$$Z_{\mathrm{ell},\phi>\mu_f} = Z_{\mathrm{ell},\phi<\mu_f} \times \left(-\frac{\theta_{11}(q,y)}{\eta(q)}\right)$$

- ► The power of *q* is the KK-charge
- y is the fugacity of flavour charge
- A periodic chiral fermion generated by the Jackiw-Rebbi zero mode
- ▶ The same result is also obtained using KS wall-crossing formula

[‡]Maldacena,Strominger,Witten 1997

Case 3: all three are magnetic

- ▶ In 4d, such decays involving three kinds of dyons are known.
- in terms of 1/4-BPS states in $\mathcal{N} = 4^{\$}$

- Wall-crossing \leftrightarrow breaking of the junction string
- It needs two independent adjoint scalars
- ▶ $R_5 \rightarrow \infty$, such states cannot exist.

[§]Lee,Yi 1998

Conclusion

- We consider the \mathbb{S}^1 compactification of 5D $\mathcal{N} = 1$ SQFT
- Tracking the "wall-crossing" from 4d to 5d
- ▶ non-magnetic \rightarrow magnetic + magnetic
 - Collapse to the boundary, turned off.
- magnetic \rightarrow magnetic + non-magnetic
 - Discontinuity of the elliptic genus
- ▶ magnetic \rightarrow magnetic + magnetic
 - Turned off