E-strings, E_{8} Weyl invariant Jacobi forms and Conway invariant Jacobi forms on Leech lattice

Kaiwen Sun (KIAS)

East Asian Joint Symposium on Fields and Strings, Osaka
Nov 23, 2021

Based on joint works with Haowu Wang, 2109.10578, 2111.10999

- Jacobi forms of lattice index
- Weyl invariant E_{8} Jacobi forms
- Conway invariant Jacobi forms on the Leech lattice

Jacobi forms of lattice index

Jacobi forms on lattice L with weight k and index $t\langle z, z\rangle$
$\varphi: \mathbb{H} \times(L \otimes \mathbb{C}) \rightarrow \mathbb{C}$ satisfies the following transformation laws:

$$
\begin{aligned}
& \varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right)=(c \tau+d)^{k} \exp \left(t \pi i \frac{c\langle z, z\rangle}{c \tau+d}\right) \varphi(\tau, z), \\
& \varphi(\tau, z+x \tau+y)=\exp (-t \pi i[\langle x, x\rangle \tau+2\langle x, z\rangle]) \varphi(\tau, z), \quad x, y \in L \\
& \varphi(\tau, z)=\sum_{n=0}^{\infty} \sum_{\ell \in L^{\prime}} f(n, \ell) e^{2 \pi i(n \tau+\langle\ell, z\rangle)}, \quad L^{\prime} \text { is dual of } L .
\end{aligned}
$$

- If $f(n, \ell)=0$ whenever $2 n t-\langle\ell, \ell\rangle<0$, then it is called a holomorphic Jacobi form.

Elliptic genera of BPS string of 6d SCFTs involve weak Jacobi forms on lattice $L_{2} \oplus L_{G} \oplus L_{F}$ with index

$$
A \epsilon_{1}^{2}+B \epsilon_{1} \epsilon_{2}+C \epsilon_{2}^{2}+t_{G}\langle m, m\rangle_{G}+t_{F}\langle m, m\rangle_{F} .
$$

An E_{8} surprise for Weyl invariant Jacobi forms

- Particular interesting when L is the root lattice of simple Lie algebra \mathfrak{g} and φ is \mathfrak{g} Weyl invariant, where t also called level.

Theorem (Wirthmüller 1992)

Weak Weyl-invariant Jacobi forms for $A_{r}, B_{r}, C_{r}, D_{r}, E_{6,7}, F_{4}, G_{2}$ are polynomially generated by $r+1$ generators with non-positive weights.

Theorem (H. Wang 2018)

Weak E_{8} Weyl-invariant Jacobi forms are NOT polynomially generated.
An old physics puzzle in (Huang-Klemm-Poretschkin 2013)

- E-string theory is a simple 6d $(1,0)$ SCFT with flavor E_{8}.
- Comes from M2-branes streched between a M5-brane and a M9-brane in the Horava-Witten picture
- The refined free energies $F_{n, g}$ of t E-strings should be expressed by E_{8} Jacobi forms of level t.
- However, the seemingly perfect modular ansatz for $F_{n, g}$ turns out to be inconsistent for $t \geq 5$. Why?

Sakai's nine E_{8} "generators" $A_{1,2,3,4,5}, B_{2,3,4,6}$

In the study on the Seiberg-Witten curve of E-strings, (Sakai 2011) defined 9 holomorphic E_{8} Jacobi forms. Using Hecke transformation T_{i} and weight 2 modular forms g_{2} on $\Gamma_{0}(j)$,
$A_{1}:=\Theta_{E_{8}}(\tau, \vec{m}), \quad A_{4}:=\Theta_{E_{8}}(\tau, 2 \vec{m}), \quad A_{i}:=T_{i} A_{1}, i=2,3,5$, $B_{j}:=\operatorname{Tr}_{\mathrm{SL}_{2}(\mathbb{Z})}\left(g_{2}(\tau) A_{1}(j \tau, j \vec{m})\right), j=2,3,4,6 . \quad i, j$ are the level.

They reduce to Eisenstein series with E_{8} fugacities off:

$$
A_{i}(\vec{m} \rightarrow 0)=E_{4}, \quad i=1,2,3,4,5, \quad B_{j}(\vec{m} \rightarrow 0)=E_{6}, j=2,3,4,6
$$

Conjecture (Sakai)

For any weak E_{8} Weyl-invariant Jacobi form ϕ, there exist $\mathrm{SL}_{2}(\mathbb{Z})$ modular form f such that $f \phi \in \mathbb{C}\left[E_{4}, E_{6}, A_{i}, B_{j}\right]$.

Proved by (H. Wang 2018). Now we are interested in finding the minimal f which is important both for establishing a practical structure theorem and for physics use.

A surprising weight 18 level 5 Jacobi form $P_{16,5}$

(Del Zotto, Gu, Huang, Kashani-Poor, Klemm and Lockhart 2017) find the following interesting polynomial $P_{16,5} \in \mathbb{C}\left[E_{6}, A_{i}, B_{j}\right]$:

$$
864 A_{1}^{3} A_{2}+3825 A_{1} B_{2}^{2}-770 A_{3} B_{2} E_{6}-840 A_{2} B_{3} E_{6}+60 A_{1} B_{4} E_{6}+21 A_{5} E_{6}^{2}
$$

By numerical tests, they conjecture (i)

$$
\frac{P_{16,5}}{E_{4}} \text { is holomorphic! }
$$

By numerical search, they also conjecture (ii) there is no polynomial divided by E_{6} is still holomorphic, (iii) no polynomial other than $P_{16,5}$ divided by E_{4} is still holomorphic.
All these conjectures are proved in (KS-Wang 2021), which play an important role in the final structure theorem.

Space of Weyl invariant Jacobi forms

At fixed level t, there exist $r(t)$ number of generators by which the space of E_{8} Weyl invariant weak Jacobi forms $J_{*, E_{8}, t}^{\mathrm{w}, W\left(E_{8}\right)}$ are spanned with coefficients in $\mathbb{C}\left[E_{4}, E_{6}\right]$. Same for the holomorphic case $J_{*, E_{8}, t}^{W}\left(E_{8}\right)$.

$$
\begin{aligned}
\sum_{t=0}^{\infty} r(t) x^{t}= & \frac{1}{(1-x)\left(1-x^{2}\right)^{2}\left(1-x^{3}\right)^{2}\left(1-x^{4}\right)^{2}\left(1-x^{5}\right)\left(1-x^{6}\right)} \\
= & 1+x+3 x^{2}+5 x^{3}+10 x^{4}+15 x^{5}+27 x^{6}+39 x^{7}+63 x^{8} \\
& +90 x^{9}+135 x^{10}+187 x^{11}+270 x^{12}+364 x^{13}+O\left(x^{14}\right)
\end{aligned}
$$

In the modular bootstrap whenever level $t E_{8}$ symmetry is involved, we need the explicit level t weak generators.

Remark

$r(t)$ is also the number of conjugacy classes in $L^{E_{8}} / t L^{E_{8}}$.

Theorem (KS-Wang 2021)

(1) $P_{16,5} / E_{4}$ is holomorphic and lies in $J_{12, E_{8}, 5}^{W\left(E_{8}\right)}$.
(2) For $P \in \mathbb{C}\left[E_{6}, A_{i}, B_{j}\right]$, if P / E_{4} is holomorphic then

$$
P / P_{16,5} \in \mathbb{C}\left[E_{6}, A_{i}, B_{j}\right]
$$

(3) Every $\varphi_{t} \in J_{*, E_{8}, t}^{\mathrm{w}, W\left(E_{8}\right)}$ can be expressed uniquely as

$$
\frac{\sum_{j=0}^{t_{1}} P_{j} E_{4}^{j} P_{16,5}^{t_{1}-j}}{\Delta^{N_{t}} E_{4}^{t_{1}}}, \quad N_{t}= \begin{cases}5 t_{0}, & \text { if } t=6 t_{0} \text { or } 6 t_{0}+1 \\ 5 t_{0}+1, & \text { if } t=6 t_{0}+2 \\ 5 t_{0}+2, & \text { if } t=6 t_{0}+3 \\ 5 t_{0}+3, & \text { if } t=6 t_{0}+4 \text { or } 6 t_{0}+5\end{cases}
$$

Here t_{1} is the integer part of $t / 5, P_{t_{1}} \in \mathbb{C}\left[E_{4}, E_{6}, A_{i}, B_{j}\right]$ and $P_{j} \in \mathbb{C}\left[E_{6}, A_{i}, B_{j}\right]$ for $0 \leq j<t_{1}$.

Examples

At level 2 , the space $J_{*, E_{8}, 2}^{\mathrm{w}, W\left(E_{8}\right)}$ is spanned by three generators

$$
\phi_{-4,2}=\frac{A_{1}^{2}-A_{2} E_{4}}{\Delta}, \quad \phi_{-2,2}=\frac{A_{2} E_{6}-B_{2} E_{4}}{\Delta}, \quad \phi_{0,2}=\frac{A_{1}^{2} E_{4}-B_{2} E_{6}}{\Delta} .
$$

At level 3 , the space $J_{*, E_{8}, 3}^{w, W\left(E_{8}\right)}$ is spanned by five generators
$\phi_{-8,3}=\frac{1}{\Delta^{2}}\left(6 A_{1}^{3} E_{4}-9 A_{1} A_{2} E_{4}^{2}+A_{3}\left(3 E_{4}^{3}-10 E_{6}^{2}\right)+30 A_{1} B_{2} E_{6}-20 B_{3} E_{4} E_{6}\right)$,
$\phi_{-6,3}=\frac{1}{\Delta^{2}}\left(6 A_{1}^{3} E_{6}+3 A_{1} E_{4}\left(10 B_{2} E_{4}-3 A_{2} E_{6}\right)-E_{4}^{2}\left(20 B_{3} E_{4}+7 A_{3} E_{6}\right)\right)$,
$\phi_{-4,3}=\frac{1}{\Delta}\left(A_{1} A_{2}-A_{3} E_{4}\right), \phi_{-2,3}=\frac{1}{\Delta}\left(A_{1} B_{2}-A_{3} E_{6}\right), \phi_{0,3}=\frac{1}{\Delta}\left(A_{1}^{3}-B_{3} E_{6}\right)$.

- We determine up to level $t \leq 13$, in which case the rank is 364 and the minimal weight of generators is -52 .
- These are the genuine bases for modular bootstrap with E_{8}.

The Leech lattice and the Conway group

- Leech lattice Λ is the unique positive definite even unimodular lattice without root in dimension 24.
- Used in proving the monstrous moonshine conjecture, the densest sphere packing in \mathbb{R}^{24}, among many other applications
- Its automorphism group is the Conway group Co_{0}.
- The quotient of $\mathrm{Co}_{0} /\{ \pm 1\}$ gives a sporadic simple group Co_{1} of order 4, 157, 776, 806, 543, 360, 000.
- Leech vectors under Co_{0} action form Conway orbits.
- For orbit $\operatorname{orb}(v), \frac{1}{2}(v, v)$ is called type.
- Conway orbits up to type 16 described in $\mathbb{A T L A S}: p=65520$
$O_{2,3 p}$
$O_{3,256 p}$
$O_{6 a, 518400 p}$
$O_{6 b, 6900 p}$
$O_{4,6075 p}$
$O_{5,70656 p}$
$O_{8 b, 12295800 p}$
$O_{8 c, 141312 p}$
$O_{7,2861568 p}$
$O_{8 a, 3 p}$
$O_{10 b, 279450 p}$
$O_{9 a, 12441600 p}$
O9b,32972800p
$O_{10 a, 143078400 p}$
$O_{10 c, 1430784 p} \ldots$

Conway invariant Jacobi forms on the Leech lattice

We are interested the Jacobi forms with 24 elliptic variables \mathfrak{z} associated to Λ, which are invariant under Co_{0}.
For index $t=1$, the space of both weak and holomorphic Jacobi forms of such type is spanned by the Theta function of Λ

$$
\begin{aligned}
A_{1}(\tau, \mathfrak{z})=\Theta_{\wedge}(\tau, \mathfrak{z})= & 1+O_{2} q^{2}+O_{3} q^{3}+O_{4} q^{4}+O_{5} q^{5} \\
& +\left(O_{6 a}+O_{6 b}\right) q^{6}+O_{7} q^{7}+\ldots
\end{aligned}
$$

Its reduction to weight 12 modular form is

$$
\begin{aligned}
& \theta_{\wedge}(\tau)=E_{12}(\tau)-\frac{65520}{691} \Delta(\tau)=1+\frac{65520}{691} \sum_{n=1}^{\infty}\left(\sigma_{11}(n)-\tau(n)\right) q^{n} \\
& =1+196560 q^{2}+16773120 q^{3}+398034000 q^{4}+4629381120 q^{5}+\ldots
\end{aligned}
$$

Theorem (KS-Wang 2021)

As free modules over $M_{*}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$,
(1) $J_{*, \Lambda, 2}^{\mathrm{w}, \mathrm{Co}_{0}}$ is generated by four forms of weights $-4,-2,0,0$.
(2) $J_{*, \Lambda, 2}^{\mathrm{Coo}}$ is generated by four forms $A_{2}, \Phi_{12,2}, B_{2}$ and $H B_{2}$ of weights $12,12,14,16$.
(3) $J_{*, \Lambda, 3}^{\mathrm{w}, \mathrm{Co}_{0}}$ is generated by ten forms of weights $-14,-12,-12,-12$, $-10,-8,-6,-4,-2,0$.
(9) $J_{*, \Lambda, 3}^{\mathrm{Coo}}$ is generated by ten forms $A_{3}, \Phi_{12,3}, \Psi_{12,3}, B_{3}, \Psi_{14,3}, H B_{3}$, $H \Psi_{14,3}, \Psi_{16,3}, H^{2} B_{3}$ and $H^{2} \Psi_{14,3}$ of weights $12,12,12,14,14$, $16,16,16,18,18$.

Here $\Phi_{12, m}$ are the $m^{\text {th }}$ Fourier coefficient of the famous
Borcherds' automorphic form Φ_{12} :

$$
\Phi_{12}(Z)=\Delta(\tau) \cdot \exp \left(-\sum_{m=1}^{\infty}\left(T_{m}\left(\Delta^{-1} A_{1}\right)\right)(\tau, \mathfrak{z}) e^{2 \pi i m \omega}\right)
$$

Applications of Conway invariant Jacobi forms

- Decomposition of many products of Conway orbits

$$
\operatorname{orb}(r)=\sum_{v \in \mathrm{Co}_{0} \cdot r} e^{2 \pi i\langle v, \mathfrak{z}\rangle}, \quad \operatorname{orb}(v) \operatorname{orb}(u)=\sum_{r \in \Lambda} c_{r} \operatorname{orb}(r)
$$

Here is the smallest example: $\mathrm{O}_{2} \otimes \mathrm{O}_{2}=$ $196560 O_{0} \oplus 4600 O_{2} \oplus 552 O_{3} \oplus 46 O_{4} \oplus 2 O_{5} \oplus 2 O_{6 b} \oplus O_{8 a}$. Note each side has about 3.8×10^{11} terms, which would be extremely hard to calculate in a brutal way.

- Modular linear differential equations
- Conjugate classes of orbits modulo $t \wedge$
- Intersection between Conway orbits and Leech vectors by the pullback to Eichler-Zaiger Jacobi forms

Questions

From (Borcherds 1985),
$|\Lambda / \Lambda|=1, \quad|\Lambda / 2 \Lambda|=4, \quad|\Lambda / 3 \Lambda|=10, \quad|\Lambda / 4 \Lambda|=31, \quad|\Lambda / t \Lambda|=?$
We know the $t=1$ case corresponding to a Monster CFT with $c=24$ from compactification on a \mathbb{Z}_{2} orbifold of the torus $\mathbb{R}^{24} / \Lambda$ (Dixon-Ginsparg-Harvey 1988). It is intriuging to ask whether there exist

- a level 2 Monster CFT such that it has 4 characters with q expansion coefficients as dimensions of Monster reps?
- a level 3 Monster CFT such that it has 10 characters?
- ...

Characters should be related to Conway invariant Jacobi forms.

- Recall $\left(E_{8}\right)_{n}$ WZW models have 1,3,5,10 characters for

$$
n=1,2,3,4
$$

Besides, the $t=4$ representative system of Conway orbits are recently found in my second paper

Thank you for listening!

國 K. Sun, H. Wang
Weyl invariant E_{8} Jacobi forms and E-strings.
arXiv: 2109.10578
嗇 K. Sun, H. Wang
Conway invariant Jacobi forms on the Leech lattice.
arXiv: 2111.10999

