E-strings, E_8 Weyl invariant Jacobi forms and Conway invariant Jacobi forms on Leech lattice

Kaiwen Sun (KIAS)

East Asian Joint Symposium on Fields and Strings, Osaka

Nov 23, 2021

Based on joint works with Haowu Wang, 2109.10578, 2111.10999

<ロト <四ト <注入 <注下 <注下 <

- Jacobi forms of lattice index
- Weyl invariant *E*₈ Jacobi forms
- Conway invariant Jacobi forms on the Leech lattice

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Jacobi forms of lattice index

Weak Jacobi forms on lattice L with weight k and index $t\langle z, z \rangle$

$$\begin{split} \varphi : \mathbb{H} \times (L \otimes \mathbb{C}) &\to \mathbb{C} \text{ satisfies the following transformation laws:} \\ \varphi \left(\frac{a\tau + b}{c\tau + d}, \frac{z}{c\tau + d} \right) &= (c\tau + d)^k \exp\left(t\pi i \frac{c\langle z, z \rangle}{c\tau + d} \right) \varphi(\tau, z), \\ \varphi(\tau, z + x\tau + y) &= \exp\left(-t\pi i [\langle x, x \rangle \tau + 2 \langle x, z \rangle] \right) \varphi(\tau, z), \quad x, y \in L, \\ \varphi(\tau, z) &= \sum_{n=0}^{\infty} \sum_{\ell \in L'} f(n, \ell) e^{2\pi i (n\tau + \langle \ell, z \rangle)}, \qquad L' \text{ is dual of } L. \end{split}$$

If f(n, ℓ) = 0 whenever 2nt - ⟨ℓ, ℓ⟩ < 0, then it is called a holomorphic Jacobi form.

Elliptic genera of BPS string of 6d SCFTs involve weak Jacobi forms on lattice $L_2 \oplus L_G \oplus L_F$ with index

$$A\epsilon_1^2 + B\epsilon_1\epsilon_2 + C\epsilon_2^2 + t_G\langle m, m \rangle_G + t_F\langle m, m \rangle_F.$$

An E_8 surprise for Weyl invariant Jacobi forms

• Particular interesting when L is the root lattice of simple Lie algebra \mathfrak{g} and φ is \mathfrak{g} Weyl invariant, where t also called level.

Theorem (Wirthmüller 1992)

Weak Weyl-invariant Jacobi forms for $A_r, B_r, C_r, D_r, E_{6,7}, F_4, G_2$ are polynomially generated by r + 1 generators with non-positive weights.

Theorem (H. Wang 2018)

Weak E₈ Weyl-invariant Jacobi forms are NOT polynomially generated.

An old physics puzzle in (Huang-Klemm-Poretschkin 2013)

- E-string theory is a simple 6d (1,0) SCFT with flavor E_8 .
- Comes from M2-branes streched between a M5-brane and a M9-brane in the Horava-Witten picture
- The refined free energies $F_{n,g}$ of t E-strings should be expressed by E_8 Jacobi forms of level t.
- However, the seemingly perfect modular ansatz for $F_{n,g}$ turns out to be inconsistent for $t \geq 5$. Why? **CONTRACT** A BARANTER TO THE STATE AND A BARANTER TO THE STATE AND A BARANTER AND A

Sakai's nine E_8 "generators" $A_{1,2,3,4,5}, B_{2,3,4,6}$

In the study on the Seiberg-Witten curve of *E*-strings, (Sakai 2011) defined 9 holomorphic E_8 Jacobi forms. Using Hecke transformation T_i and weight 2 modular forms g_2 on $\Gamma_0(j)$,

$$\begin{array}{ll} A_1 := \Theta_{E_8}(\tau, \vec{m}), & A_4 := \Theta_{E_8}(\tau, 2\vec{m}), & A_i := T_i A_1, \ i = 2, 3, 5, \\ B_j := \mathrm{Tr}_{\mathrm{SL}_2(\mathbb{Z})}(g_2(\tau) A_1(j\tau, j\vec{m})), \ j = 2, 3, 4, 6. & i, j \ \text{are the level.} \end{array}$$

They reduce to Eisenstein series with E_8 fugacities off:

$$A_i(\vec{m} \to 0) = E_4, \ i = 1, 2, 3, 4, 5, \quad B_j(\vec{m} \to 0) = E_6, \ j = 2, 3, 4, 6.$$

Conjecture (Sakai)

For any weak E_8 Weyl-invariant Jacobi form ϕ , there exist $SL_2(\mathbb{Z})$ modular form f such that $f\phi \in \mathbb{C}[E_4, E_6, A_i, B_j]$.

Proved by (H. Wang 2018). Now we are interested in finding the minimal f which is important both for establishing a practical structure theorem and for physics use.

A surprising weight 18 level 5 Jacobi form $P_{16,5}$

(Del Zotto, Gu, Huang, Kashani-Poor, Klemm and Lockhart 2017) find the following interesting polynomial $P_{16,5} \in \mathbb{C}[E_6, A_i, B_j]$:

 $864A_1^3A_2 + 3825A_1B_2^2 - 770A_3B_2E_6 - 840A_2B_3E_6 + 60A_1B_4E_6 + 21A_5E_6^2$

By numerical tests, they conjecture (i)

 $\frac{P_{16,5}}{E_4}$ is holomorphic!

By numerical search, they also conjecture (ii) there is no polynomial divided by E_6 is still holomorphic, (iii) no polynomial other than $P_{16,5}$ divided by E_4 is still holomorphic. All these conjectures are proved in (KS-Wang 2021), which play an important role in the final structure theorem.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Space of Weyl invariant Jacobi forms

At fixed level *t*, there exist r(t) number of generators by which the space of E_8 Weyl invariant weak Jacobi forms $J_{*,E_8,t}^{w,W(E_8)}$ are spanned with coefficients in $\mathbb{C}[E_4, E_6]$. Same for the holomorphic case $J_{*,E_8,t}^{W(E_8)}$.

$$\sum_{t=0}^{\infty} r(t)x^{t} = \frac{1}{(1-x)(1-x^{2})^{2}(1-x^{3})^{2}(1-x^{4})^{2}(1-x^{5})(1-x^{6})}$$

= 1 + x + 3x^{2} + 5x^{3} + 10x^{4} + 15x^{5} + 27x^{6} + 39x^{7} + 63x^{8} + 90x^{9} + 135x^{10} + 187x^{11} + 270x^{12} + 364x^{13} + O(x^{14}).

In the modular bootstrap whenever level $t E_8$ symmetry is involved, we need the explicit level t weak generators.

Remark

r(t) is also the number of conjugacy classes in L^{E_8}/tL^{E_8} .

Kaiwen Sun (KIAS) E-strings, E₈ Weyl invariant Jacobi forms and Conway invariant

- 4 周 ト 4 ヨ ト 4 ヨ ト

Structure theorem

Theorem (KS-Wang 2021)

• $P_{16,5}/E_4$ is holomorphic and lies in $J_{12,E_8,5}^{W(E_8)}$.

2 For $P \in \mathbb{C}[E_6, A_i, B_j]$, if P/E_4 is holomorphic then

$$P/P_{16,5} \in \mathbb{C}[E_6, A_i, B_j].$$

3 Every $\varphi_t \in J^{w,W(E_8)}_{*,E_8,t}$ can be expressed uniquely as

$$\frac{\sum_{j=0}^{t_1} P_j E_4^j P_{16,5}^{t_1-j}}{\Delta^{N_t} E_4^{t_1}}, \qquad N_t = \begin{cases} 5t_0, & \text{if } t = 6t_0 \text{ or } 6t_0 + 1, \\ 5t_0 + 1, & \text{if } t = 6t_0 + 2, \\ 5t_0 + 2, & \text{if } t = 6t_0 + 3, \\ 5t_0 + 3, & \text{if } t = 6t_0 + 4 \text{ or } 6t_0 + 5. \end{cases}$$

Here t_1 is the integer part of t/5, $P_{t_1} \in \mathbb{C}[E_4, E_6, A_i, B_j]$ and $P_j \in \mathbb{C}[E_6, A_i, B_j]$ for $0 \le j < t_1$.

Examples

At level 2, the space
$$J_{*,E_8,2}^{w,W(E_8)}$$
 is spanned by three generators
 $\phi_{-4,2} = \frac{A_1^2 - A_2 E_4}{\Delta}, \quad \phi_{-2,2} = \frac{A_2 E_6 - B_2 E_4}{\Delta}, \quad \phi_{0,2} = \frac{A_1^2 E_4 - B_2 E_6}{\Delta}.$

At level 3, the space $J^{\mathrm{w},W(E_8)}_{*,E_8,3}$ is spanned by five generators

$$\begin{split} \phi_{-8,3} &= \frac{1}{\Delta^2} (6A_1^3 E_4 - 9A_1 A_2 E_4^2 + A_3 (3E_4^3 - 10E_6^2) + 30A_1 B_2 E_6 - 20B_3 E_4 E_6), \\ \phi_{-6,3} &= \frac{1}{\Delta^2} (6A_1^3 E_6 + 3A_1 E_4 (10B_2 E_4 - 3A_2 E_6) - E_4^2 (20B_3 E_4 + 7A_3 E_6)), \\ \phi_{-4,3} &= \frac{1}{\Delta} (A_1 A_2 - A_3 E_4), \ \phi_{-2,3} &= \frac{1}{\Delta} (A_1 B_2 - A_3 E_6), \ \phi_{0,3} &= \frac{1}{\Delta} (A_1^3 - B_3 E_6). \end{split}$$

- We determine up to level t ≤ 13, in which case the rank is 364 and the minimal weight of generators is -52.
- These are the genuine bases for modular bootstrap with E_8 .

E-strings, E_8 Weyl invariant Jacobi forms and Conway invariant

The Leech lattice and the Conway group

- Leech lattice Λ is the unique positive definite even unimodular lattice without root in dimension 24.
- Used in proving the monstrous moonshine conjecture, the densest sphere packing in \mathbb{R}^{24} , among many other applications
- \bullet Its automorphism group is the Conway group $\mathrm{Co}_0.$
- The quotient of $Co_0 / \{\pm 1\}$ gives a sporadic simple group Co_1 of order 4, 157, 776, 806, 543, 360, 000.
- \bullet Leech vectors under Co_0 action form Conway orbits.
- For orbit $\operatorname{orb}(v)$, $\frac{1}{2}(v, v)$ is called type.
- Conway orbits up to type 16 described in ATLAS: p = 65520

<i>O</i> _{2,3} <i>p</i>	O _{3,256} p	O _{4,6075}	O _{5,70656p}
<i>O</i> _{6a,518400} <i>p</i>	O _{6b,6900p}	O _{7,2861568p}	0 _{8a,3p}
O _{8b,12295800p}	O _{8c,141312p}	<i>O</i> 9 <i>a</i> ,12441600 <i>p</i>	O _{9b,32972800p}
<i>O</i> _{10<i>a</i>,143078400<i>p</i>}	O _{10b,279450p}	O _{10c,1430784p}	

Conway invariant Jacobi forms on the Leech lattice

We are interested the Jacobi forms with 24 elliptic variables \mathfrak{z} associated to Λ , which are invariant under Co_0 . For index t = 1, the space of both weak and holomorphic Jacobi forms of such type is spanned by the Theta function of Λ

$$egin{aligned} A_1(au,\mathfrak{z}) &= \Theta_{\Lambda}(au,\mathfrak{z}) = 1 + O_2 q^2 + O_3 q^3 + O_4 q^4 + O_5 q^5 \ &+ (O_{6a} + O_{6b}) q^6 + O_7 q^7 + \dots \end{aligned}$$

Its reduction to weight 12 modular form is

$$\theta_{\Lambda}(\tau) = E_{12}(\tau) - \frac{65520}{691} \Delta(\tau) = 1 + \frac{65520}{691} \sum_{n=1}^{\infty} (\sigma_{11}(n) - \tau(n)) q^n$$

= 1 + 196560q² + 16773120q³ + 398034000q⁴ + 4629381120q⁵ + ...

Structure theorem for index 2 and 3

Theorem (KS-Wang 2021)

As free modules over $M_*(SL_2(\mathbb{Z}))$,

- $J_{*,\Lambda,2}^{w,Co_0}$ is generated by four forms of weights -4, -2, 0, 0.
- S J^{Coo}_{*,Λ,2} is generated by four forms A₂, Φ_{12,2}, B₂ and HB₂ of weights 12, 12, 14, 16.
- J^{w,Co₀}_{*,Λ,3} is generated by ten forms of weights −14, −12, −12, −12, −12, −10, −8, −6, −4, −2, 0.
- J^{Coo}_{*,Λ,3} is generated by ten forms A₃, Φ_{12,3}, Ψ_{12,3}, B₃, Ψ_{14,3}, HB₃, HΨ_{14,3}, Ψ_{16,3}, H²B₃ and H²Ψ_{14,3} of weights 12, 12, 12, 14, 14, 16, 16, 16, 18, 18.

Here $\Phi_{12,m}$ are the m^{th} Fourier coefficient of the famous Borcherds' automorphic form Φ_{12} :

$$\Phi_{12}(Z) = \Delta(\tau) \cdot \exp\left(-\sum_{m=1}^{\infty} (T_m(\Delta^{-1}A_1))(\tau,\mathfrak{z})e^{2\pi i m\omega}\right)$$

Applications of Conway invariant Jacobi forms

• Decomposition of many products of Conway orbits

$$\operatorname{orb}(r) = \sum_{v \in \operatorname{Co}_0 \cdot r} e^{2\pi i \langle v, j \rangle}, \quad \operatorname{orb}(v) \operatorname{orb}(u) = \sum_{r \in \Lambda} c_r \operatorname{orb}(r).$$

Here is the smallest example: $O_2 \otimes O_2 =$ 196560 $O_0 \oplus 4600O_2 \oplus 552O_3 \oplus 46O_4 \oplus 2O_5 \oplus 2O_{6b} \oplus O_{8a}$. Note each side has about 3.8×10^{11} terms, which would be extremely hard to calculate in a brutal way.

- Modular linear differential equations
- Conjugate classes of orbits modulo $t\Lambda$
- Intersection between Conway orbits and Leech vectors by the pullback to Eichler–Zaiger Jacobi forms

周 ト イ ヨ ト イ ヨ ト

From (Borcherds 1985),

 $|\Lambda/\Lambda| = 1, \quad |\Lambda/2\Lambda| = 4, \quad |\Lambda/3\Lambda| = 10, \quad |\Lambda/4\Lambda| = 31, \quad |\Lambda/t\Lambda| = ?$

We know the t = 1 case corresponding to a Monster CFT with c = 24 from compactification on a \mathbb{Z}_2 orbifold of the torus \mathbb{R}^{24}/Λ (Dixon-Ginsparg-Harvey 1988). It is intriuging to ask whether there exist

- a level 2 Monster CFT such that it has 4 characters with *q* expansion coefficients as dimensions of Monster reps?
- a level 3 Monster CFT such that it has 10 characters?
- . . .

Characters should be related to Conway invariant Jacobi forms.

• Recall $(E_8)_n$ WZW models have 1,3,5,10 characters for n = 1, 2, 3, 4.

Besides, the t = 4 representative system of Conway orbits are recently found in my second paper

Thank you for listening!

K. Sun, H. Wang Weyl invariant E₈ Jacobi forms and E-strings. arXiv: 2109.10578

K. Sun, H. Wang Conway invariant Jacobi forms on the Leech lattice. *arXiv: 2111.10999*