Entanglement entropy in Schwarzschild spacetime

Yoshinori Matsuo *Kyoto University*

Based on [arXiv:2110.13898]

East Asia Joint Symposium on Fields and Strings 2021 @ Osaka City U.

Additivity conjecture in quantum information theory

 \mathcal{A}_1 , \mathcal{A}_2 : two sets of states (density matrices)

 \mathcal{N}_i : quantum channel (CPTP)

$$\mathcal{N}_i \colon \mathcal{A}_i \to \mathcal{B}_i$$

Minimum output entropy

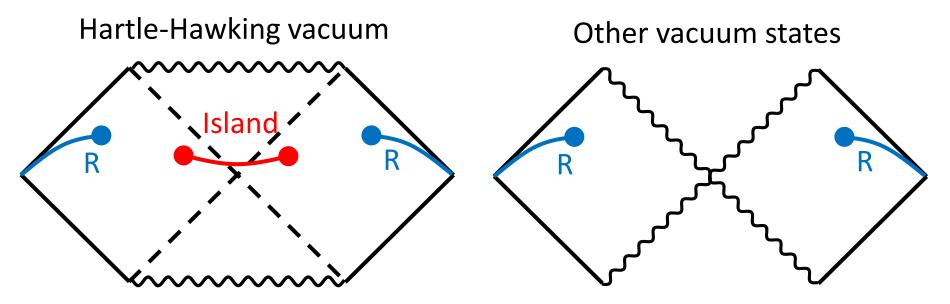
$$S_{\min}(\mathcal{N}_i) = \min_{\rho \in \mathcal{A}_i} S(\mathcal{N}_i(\rho))$$

satisfies additivity condition

$$S_{\min}(\mathcal{N}_1 \otimes \mathcal{N}_2) = S_{\min}(\mathcal{N}_1) + S_{\min}(\mathcal{N}_2)$$

Geometries with disconnected exteriors should be considered

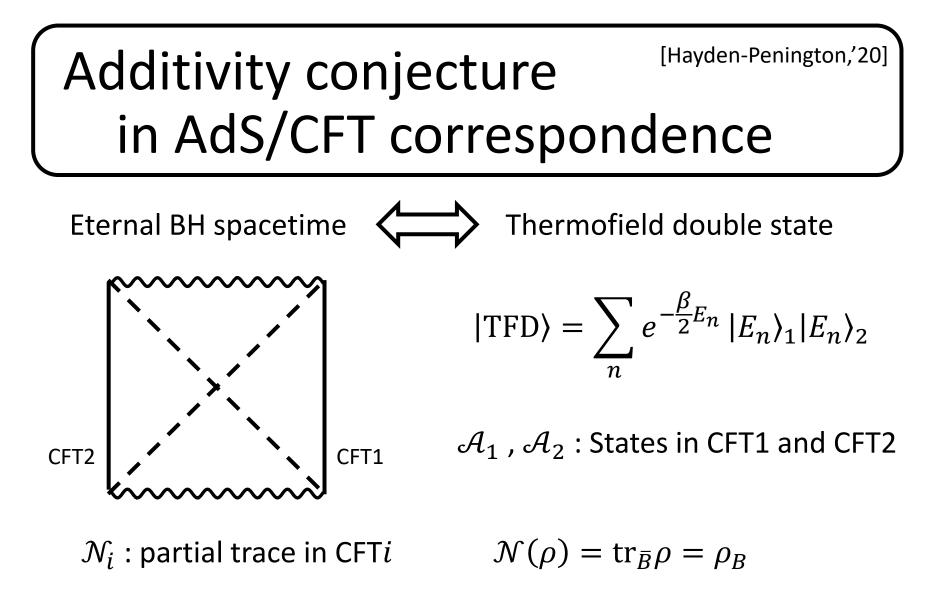
Entanglement entropy of region R in Schwarzschild spacetime



State with minimal entropy should be considered

General vacuum states give disconnected geometries

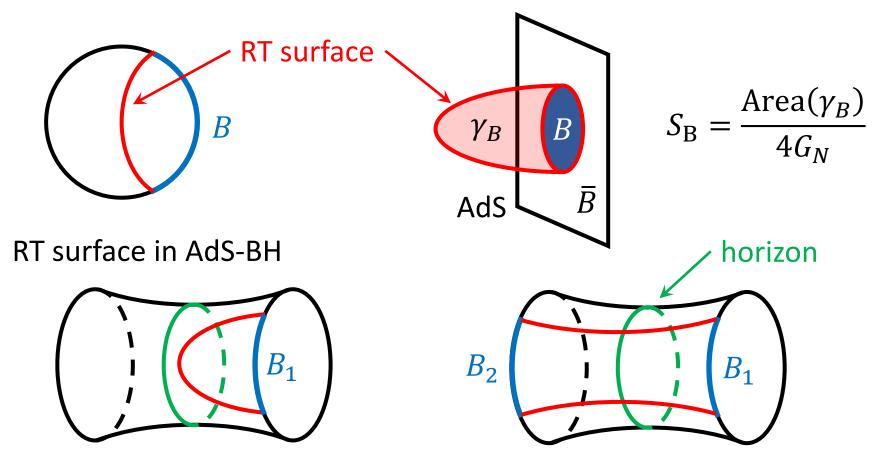
gives consistent entropy to additivity conjecture



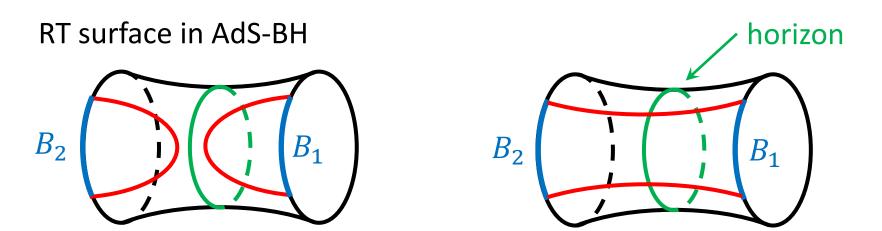
Is additivity condition satisfied in AdS/CFT setup? $S_{\min}(\mathcal{N}_1 \otimes \mathcal{N}_2) \stackrel{?}{=} S_{\min}(\mathcal{N}_1) + S_{\min}(\mathcal{N}_2)$

Entanglement entropy in AdS/CFT

Entanglement entropy is given by Ryu-Takayanagi formula



Additivity conjecture [Hayden-Penington,'20] in AdS/CFT correspondence



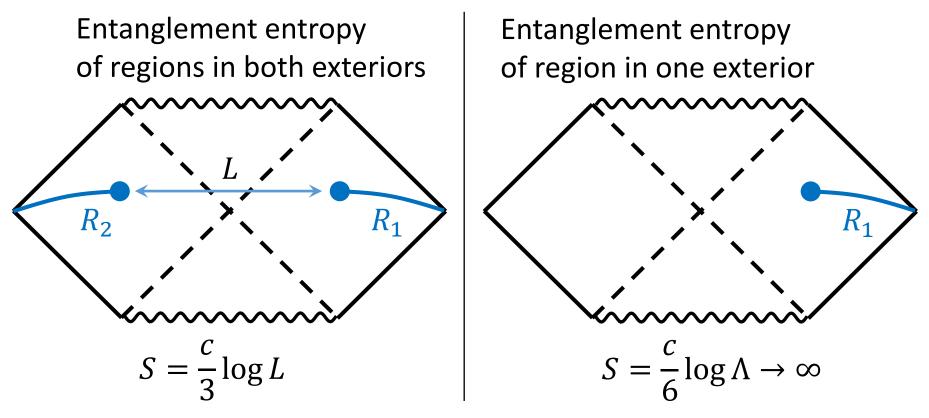
 $S(B_1) + S(B_2) > S(B_1 \cup B_2)$

Additivity conjecture is not satisfied by $S(B_i)$

Two possibilities

- Two exteriors are disconnected $S(B_i) \neq S_{\min}(\mathcal{N}_i)$
- Large violation of additivity conjecture $S(B_i) = S_{\min}(\mathcal{N}_i)$

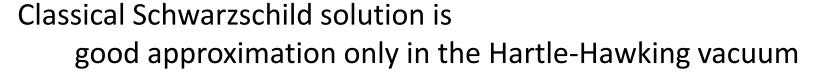
Entanglement entropy in Schwarzschild spacetime

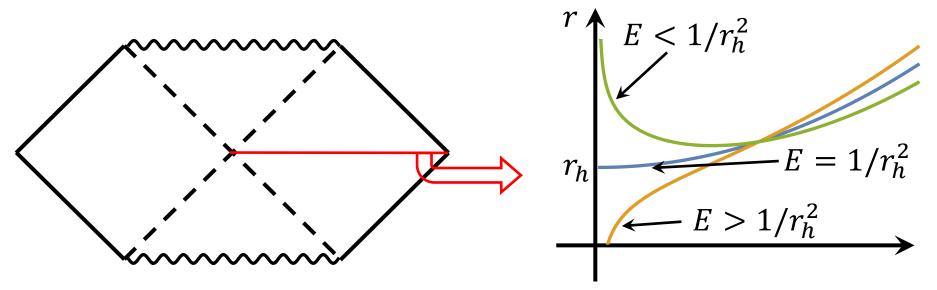


 $S(R_1 \cup R_2) < S(R_1) + S(R_2)$

Additivity conjecture is not satisfied

Semi-classical Schwarzschild

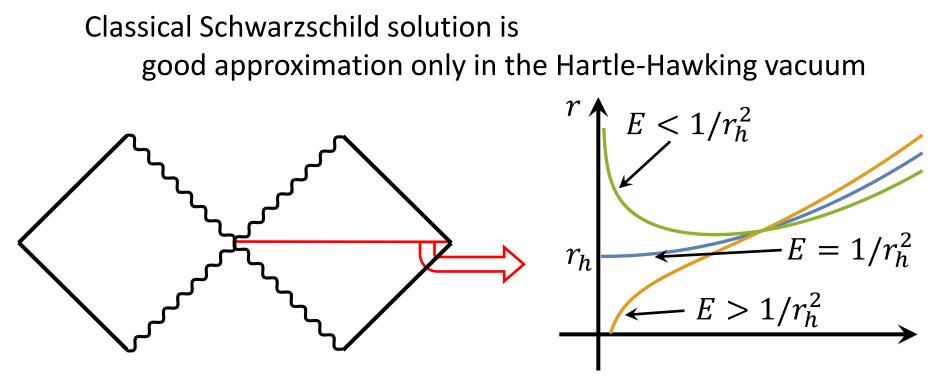




If radiation of vacuum state is $E \neq 1/r_h^2$ (different from that in HH), semi-classical geometry ends around the horizon.

Two exteriors are disconnected

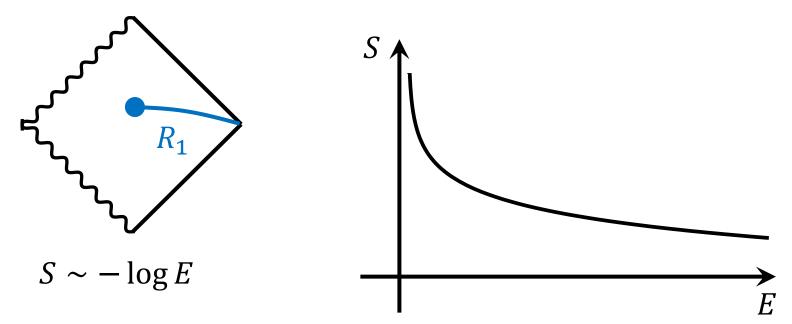
Semi-classical Schwarzschild



If radiation of vacuum state is $E \neq 1/r_h^2$ (different from that in HH), semi-classical geometry ends around the horizon.

Two exteriors are disconnected

Entanglement entropy in semi-classical Schwarzschild



E : Energy of radiation in the vacuum state

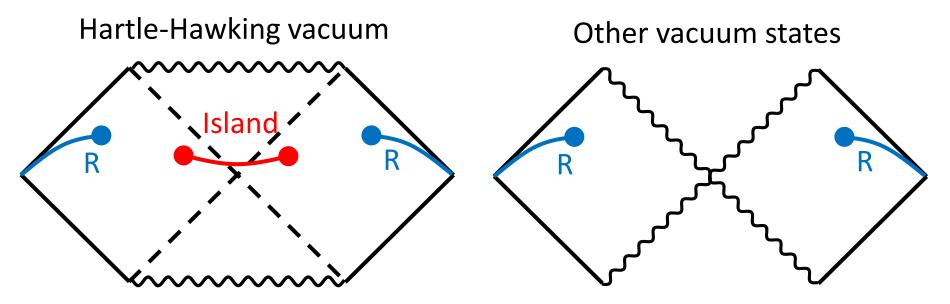
In disconnected cases, region R_1 and R_2 are disentangled.

$$S(R_1 \cup R_2) = S(R_1) + S(R_2)$$

Additivity conjecture is satisfied

Geometries with disconnected exteriors should be considered

Entanglement entropy of region R in Schwarzschild spacetime



State with minimal entropy should be considered

General vacuum states give disconnected geometries

gives consistent entropy to additivity conjecture

Thank you