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gravitational coupling g is asymptotically free toward the future. It also possesses the
ultraviolet fixed point indicating that the Universe begun with the de Sitter expansion
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1 Introduction

In the inflation theory, the Universe is assumed to undergo the accelerated expansion. Quan-
tum fluctuations are redshifted to exit the cosmological horizon one after another. From the
static observer’s point of view, nothing goes out of the horizon but the conformal zero mode
accumulates at the horizon. We build on the stochastic picture of infrared (IR) fluctua-
tions [8, 14]. It is closely related to the diffusion process of the conformal zero modes.
The negative norm of the conformal mode is crucial to screen the cosmological constant
operator [4]. The IR logarithmic effects in quantum gravity, which are expressed by the
scale factor a of the Universe as logn a, play an essential role in cosmic expansion. [15, 16].
In order to evaluate the IR logarithmic effects nonperturbatively, we formulate a Fokker
Planck equation for the conformal zero (super-horizon) mode of the metric. We obtain the
β function for g = GNH2/π in a Gaussian approximation which is valid for a small coupling
g. We first sum up the logn a terms to all orders to identify the one-loop running coupling
g = 2/ logN , where N = log a is the e-folding number. We thus resum the 1/ logn N type
corrections to clarify the quantum back-reaction on g. Since the β function turns out to
be negative, it implies asymptotic freedom of g toward the future [18, 19]. Furthermore,
the β function possesses the ultraviolet (UV) fixed point in the past when g = 1/2. This
fact indicates that our Universe started with the dS expansion at the Planck scale with a
minimal entropy S = 2 while it has S = 10120 now. Since ϵ ∝ β, the smallness of ϵ is
naturally explained. Strictly speaking, our approximation is justifiable when the coupling is
small. Nevertheless, g = 1/2 might be small enough such that our picture on the dawn of
the Universe holds.
Our fundamental point of view is that the de Sitter entropy is the von Neumann entropy
of the conformal zero mode. In the holographic approach, we count the Entropy at the
boundary. There occurs the stochastic process which reduces g while increasing S. This
process is described by the renormalization group which gives rise to gravitational Fokker-
Planck equation.

2 dS entropy and asymptotic freedom

Gibbons and Hawking pointed out that de Sitter space has a geometric entropy proportional
to the area of the horizon [20]. If the Hubble parameter decreases with time, the dS entropy
must increase simultaneously. We investigate four-dimensional gravity on dS space from an
entropic point of view. We postulate that the identity of the dS entropy is the von Neumann
entropy of the conformal zero mode [6, 7]. As the Universe expands at an accelerated rate,
zero modes accumulate at the horizon. In this sense, it is a natural idea to identify the
entropy of conformal zero modes with de Sitter entropy. IN order to respect the local
Lorentz symmetry, only the conformal mode may contribute to the time evolution of the
entropy.
dS space may be decomposed into the bulk and the boundary, i.e., the sub-horizon and
horizon. From a holographic perspective, we consider the conformal zero mode dependence

1

Gibbons Hawking

1 Introduction

In the inflation theory, the Universe is assumed to undergo the accelerated expansion. Quan-
tum fluctuations are redshifted to exit the cosmological horizon one after another. From the
static observer’s point of view, nothing goes out of the horizon but the conformal zero mode
accumulates at the horizon. We build on the stochastic picture of infrared (IR) fluctua-
tions [8, 14]. It is closely related to the diffusion process of the conformal zero modes.
The negative norm of the conformal mode is crucial to screen the cosmological constant
operator [4]. The IR logarithmic effects in quantum gravity, which are expressed by the
scale factor a of the Universe as logn a, play an essential role in cosmic expansion. [15, 16].
In order to evaluate the IR logarithmic effects nonperturbatively, we formulate a Fokker
Planck equation for the conformal zero (super-horizon) mode of the metric. We obtain the
β function for g = GNH2/π in a Gaussian approximation which is valid for a small coupling
g. We first sum up the logn a terms to all orders to identify the one-loop running coupling
g = 2/ logN , where N = log a is the e-folding number. We thus resum the 1/ logn N type
corrections to clarify the quantum back-reaction on g. Since the β function turns out to
be negative, it implies asymptotic freedom of g toward the future [18, 19]. Furthermore,
the β function possesses the ultraviolet (UV) fixed point in the past when g = 1/2. This
fact indicates that our Universe started with the dS expansion at the Planck scale with a
minimal entropy S = 2 while it has S = 10120 now. Since ϵ ∝ β, the smallness of ϵ is
naturally explained. Strictly speaking, our approximation is justifiable when the coupling is
small. Nevertheless, g = 1/2 might be small enough such that our picture on the dawn of
the Universe holds.
Our fundamental point of view is that the de Sitter entropy is the von Neumann entropy
of the conformal zero mode. In the holographic approach, we count the Entropy at the
boundary. There occurs the stochastic process which reduces g while increasing S. This
process is described by the renormalization group which gives rise to gravitational Fokker-
Planck equation.

2 dS entropy and asymptotic freedom

Gibbons and Hawking pointed out that de Sitter space has a geometric entropy proportional
to the area of the horizon [20]. If the Hubble parameter decreases with time, the dS entropy
must increase simultaneously. We investigate four-dimensional gravity on dS space from an
entropic point of view. We postulate that the identity of the dS entropy is the von Neumann
entropy of the conformal zero mode [6, 7]. As the Universe expands at an accelerated rate,
zero modes accumulate at the horizon. In this sense, it is a natural idea to identify the
entropy of conformal zero modes with de Sitter entropy. IN order to respect the local
Lorentz symmetry, only the conformal mode may contribute to the time evolution of the
entropy.
dS space may be decomposed into the bulk and the boundary, i.e., the sub-horizon and
horizon. From a holographic perspective, we consider the conformal zero mode dependence

1

of the Einstein-Hilbert action:
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16πGN

∫
√
gd4x(Re2ω − 6H2e4ω) ≃ π

GNH2
(1− 4ω2), (2.1)

where the gauge fixing sector is suppressed because it does not produce the IR logarithms
in the background gauge. Our gauge fixing procedure and the propagators are explained
in [16]. The semiclassical dS entropy was obtained by rotating the background spacetime
dS4 to S4 in (2.1).
The quadratic part of ω constitutes a Gaussian distribution function for the conformal zero
mode,

ρ(ω) =

√
4

πg
exp

(
− 4

g
ω2

)
. (2.2)

It may represent an initial state of the Universe when the dS expansion begins. In order
to describe the time evolution of the conformal factor of the Universe, we introduce a new
parameter ξ(t).

ρ(ξ(t),ω) =

√
4ξ(t)

πg
exp

(
− 4ξ(t)

g
ω2

)
. (2.3)

As we show below, ξ(t) = 1/6N(t) where N(t) =
∫ t

dt′H(t′) is the e-folding number. It is the
only parameter in the Gaussian approximation. We work within the Gaussian approximation
since it is an excellent approximation for gravity with the small coupling g. The von Neumann
entropy S = −tr(ρ log ρ) becomes larger as ξ becomes smaller. Thus ξ triggers an instability
in de Sitter space by diffusion.
In terms of the distribution function, the n-point functions are defined as follows

⟨ωn(t)⟩ =
∫

dωρ(ξ(t),ω)ωn. (2.4)

In particular, the two-point function of the conformal mode is given by

⟨ω2(t)⟩ = g

8ξ(t)
=

3g

4
N(t) (2.5)

1/ξ = 6N is the enhancement factor of the scalar perturbation over tensor mode. Such an
enhancement arises by the stochastic effects.
The negative norm of the bulk conformal mode indicates that the ρ diffuses toward the future.
In fact the perturbative quantum expectation of (2.1) gives g(t) ∼ g(1 − 3gHt). However
such an estimate is reliable only locally Ht ≪ 1. In cosmology it is essential to resum all
powers of IR logarithms (Ht)n to understand the global picture. For such a purpose, we find
our holographic approach is up to the task.
We investigate the dynamics of conformal zero modes after integrating the bulk modes. The
two point function gives rise to IR logarithms.

< ω2 >bulk = −3g

4

∫ Λa

Ha

dk

k
(2.6)

=− 3g

4
Ht = −3g

4
N(t) (2.7)
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Appendix B.

In section 2, we first review this subject from our point of view for self-contained-ness. We
present a clear explanation how the stochastic equations are derived by the renormalization
group. In the Gaussian approximation, we have obtained an amazingly simple FP equation
(3.10). It is referred to as the master equation.

The major results of this paper are investigations of UV finite and inflationary solutions of
the master equation. We argue there are periods when either of them is dominant. Firstly
UV finite solutions show the Universe was born as a Planck scale de Sitter space. The
gravitational coupling decays logarithmically with time. ϵ deminishes to a minute number.
It ensures that the Universe undergoes sufficient inflation to initiate big bang. In other
words, we claim there is a pre-inflation era which solves ϵ problem.

2 dS entropy and asymptotic freedom

Gibbons and Hawking pointed out that de Sitter space has a geometric entropy proportional
to the area of the horizon [8]. They rotate dS4 into S4. The volume of S4 is VS4 = 8π2/3H4.
The Einstein action on S4 is VS46H2/16πGN = 1/g where g = GNH2/π. We may consider
slowly expanding Universe like inflation. If the Hubble parameter decreases with time, the
dS entropy must increase simultaneously. We investigate four-dimensional gravity on dS
space from an entropic point of view. We postulate that the quantum correction of the dS
entropy comes from the von Neumann entropy of the conformal zero mode [9, 14]. As the
Universe expands with an accelerated speed, zero modes accumulate at the horizon. In this
sense, it is a natural idea to identify the entropy of conformal zero modes with the quantum
correction of de Sitter entropy. In order to respect the local Lorentz symmetry, only the
conformal mode may contribute to the time evolution of the entropy.

We have shown that the linear inflaton potential V (f) = 1−2γf is generated at the one-loop
level [14],

∫ √
−gd4x

[ 1

κ2
(R− 6H2V (f)− 2γ∂µf∂

µf)
]
, (2.1)

where κ2 = 16πGN . We may sweep the inflaton under the rug by using its identity with the
conformal mode f = log a.

This inflation theory (2.1) is dual to the following action on shell.
∫

d4x
[ 1

κ2
(a2R̃− 6H2a4(1− 2

√
γ log a) + 6∂µa∂

µa)
]
. (2.2)

a denotes the conformal mode of the metric and (2.2) is the Einstein action plus IR loga-
rithmic correction. The slow-roll parameter ϵ = (V ′/2V )2κ2 agrees with coefficient γ in the
one loop IR logarithmic correction to V = 1− 2

√
γ log(a). Here ϵ = γ = (3/8π)(H2κ2/4π).
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The solution a = a1+γ
c , log(ac) = Ht also extremizes this restricted action (2.2) as it does so

in an extended field space with an inflaton (2.1). In this Lagrangian, the nontrivial scaling
dimension of the Hubble parameterH2(t) ∼ exp(−2γωc) is manifest. The equation of motion
with respect to h00 is satisfied by construction. It requires us to introduce a new counter
term. It is a finite renormalization of the kinetic term of the conformal mode. Although it
is no longer manifest here, general covariance is kept intact in its dual inflation theory.

dS space may be decomposed into the bulk and the boundary, i.e., the sub-horizon and
horizon. From a holographic perspective, we consider the conformal zero mode dependence
of the Einstein-Hilbert action:
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∫
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GNH2
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4
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ω2

)
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√
4ξ(t)

πg
exp

(
− 4ξ(t)

g
ω2

)
. (2.5)

As we have shown [14] ξ(t) = 1/6N(t) where N(t) =
∫ t

dt′H(t′) is the e-folding number.
It is the only parameter in the Gaussian approximation. We work within the Gaussian
approximation since it is an excellent approximation for gravity with the small coupling g.
The von Neumann entropy S = −tr(ρ log ρ) ∼ 1/2 log(1/ξ) becomes larger as ξ becomes
smaller. Thus the diffusion triggers an instability in de Sitter space.

In terms of the distribution function, the n-point functions are defined as follows

⟨ωn(t)⟩ =
∫

dωρ(ξ(t),ω)ωn. (2.6)

In particular, the two-point function of the conformal mode is given by

⟨ω2(t)⟩ = g

8ξ(t)
=

3g

4
N(t). (2.7)
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The negative norm of the bulk conformal mode indicates that the ρ diffuses toward the future.
In fact the perturbative quantum expectation of (2.3) gives g(t) ∼ g(1−2γHt) ∼ g(1−3gHt).
The duality between the inflation (2.1) and quantum (2.2) gravity is also based on this one
loop effect. However such an estimate is reliable only locally Ht ≪ 1. In cosmology it is
essential to resum all powers of IR logarithms (Ht)n to understand the global picture. For
such a purpose, we find our holographic approach is up to the task.

We investigate the dynamics of conformal zero modes after integrating the bulk modes. The
two point function gives rise to IR logarithms.

< ω2 >bulk = −3g

4

∫ Λ

Ha(t)

dk

k

=
3g

4
Ht =

3g

4
N(t). (2.8)

We assume there is no time dependent UV contributions. We focus on the Hubble scale
physics where a(t) = 1/ − τH = exp(Ht). We recall that −τµ ∼ 1 at the Horizon. While
the wave functions of the bulk modes oscillate with respect to τ , the boundary mode is
constant. That is why we call it the zero mode. Our strategy is to integrate out oscillating
modes first.

The finite bare distribution function is given by subtracting the bulk mode contribution
above the Hubble scale. We thus construct low energy effective action around the Hubble
scale. Such a theory is holographic and obeys the renormalization group.

ρB = exp
(
− 3g

4

Ht

2

∂2

∂ω2

)
ρ. (2.9)

The renormalization scale of the low energy effective action is the Hubble scale. As ρB is
independent of the renormalization scale, the renormalized distribution function obeys the
following renormalization group equation.

ρ̇− 3g

4
· H
2

∂2

∂ω2
ρ = 0, (2.10)

where Ȯ denotes a derivative of O with respect to the cosmic time t. The factor 3g/4 in
the diffusion term is the projection factor to the IR region. The conformal mode ω consists
of a minimally coupled field X. ω =

√
3X/4 + Y/4 [4, 5]. We neglect Y because it has the

effective mass m2 = 2H2. There is no drift term in the reduced space consisting only of X.

The gravitational FP equation (2.10) is obtained by integrating the quantum bulk modes
inside the horizon. It turns out to be a diffusion equation due to the lack of the drift term.
The solution is the Brownian motion as it is jolted by the horizon exiting modes. The FP
equation is a dynamical renormalization group equation. We can sum up the IR logarithms
logn a = (Ht)n by this equation to find a running coupling g(t).

5

The FP (diffusion) equation in the Appendix A shows that the solution is the Gaussian
distribution with the standard deviation increasing linearly with the e-folding number N(t)
[21]

2At =
3

4
gHt =

3g

4
N(t) =

g

8ξ
. (2.11)

The von Neumann entropy thus increases logarithmically,

δS =
1

2
log

1

ξ
=

1

2
log 6N(t). (2.12)

The standard deviation is related to N as ξ = 1/6N in (2.12).

Identifying the von Neumann entropy of conformal zero modes with the quantum correction
to dS entropy, we obtain the bare action with the counter term

1

gB
=

1

g(N)
− 1

2
log(6N). (2.13)

By requiring the bare action is independent of the renormalization scale: namely N , we
obtain the one loop β function.

β =
∂

∂ log(N)
g(N) = −1

2
g(N)2. (2.14)

We find the running gravitational coupling as †

g(N) =
2

log(N)
. (2.15)

The holographic investigation at the boundary shows that g is asymptotically free toward
the future. The renormalization group trajectory must reach Einstein gravity in the weak
coupling limit for the consistency with general covariance [22]. We find that it approaches a
flat spacetime in agreement with this requirement.

3 Inflation and dS duality

The Gaussian distribution of the conformal zero mode is characterized by the standard
deviation 1/ξ. Although there is no inflaton in Einstein gravity, we propose to identify
the inflaton ϕ2 as ϕ2 ∝ 1/ξ. In our interpretation, the inflaton is not a fundamental field
but a stochastic field. It grows due to the Brownian motion: IR logarithmic fluctuations
1/ξ ∼ N . While the inflation theory is specified by the inflaton potential, the dynamics of

†The coefficient in front of N can be put to the identity.
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The lower energy cut-off is the Hubble scale a = 1/ − τH = exp(Ht) while the upper
cut-off Λ is assumed to be time independent. The finite bare distribution function is given
by subtracting the bulk mode contribution beyond Hubble scale. We thus construct low
energy effective action around the Hubble scale. Such a theory is holographic and obeys
the renormalization group which guarantee the subtraction point independence. of the bare
quantity.
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4

Ht

2

∂2

∂ω2

)
ρ, (2.8)
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∫
µ dk/k ∼ − log µ =
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4
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√
3X/4 + Y/4 [15, 16]. We neglect Y because it has the
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The gravitational FP equation (2.9) is obtained by integrating the quantum bulk modes
inside the horizon. It turns out to be a diffusion equation due to the lack of the drift term.
The solution performs the Brownian motion as it is jolted by the conformal zero modes. The
conformal zero modes are real stochastic noise. In contrast sub-horizon conformal modes are
quantum modes with the negative norm. The FP equation is a dynamical renormalization
group equation. We can sum up the IR logarithms logn a = (Ht)n by this equation to find
a running coupling g(t).
The FP (diffusion) equation in the Appendix shows that the solution is the Gaussian with
the standard deviation increases linearly with the e-folding number N(t) [17]

2At =
3

4
gHt =

g

8
N(t) (2.10)

The von Neumann entropy thus increases logarithmically,

δS = −1

2
log ξ =

1

2
log 6N(t). (2.11)

Identifying the time evolution of the von Neumann entropy with that of the effective action,
i.e., the dS entropy S(t) = 1/g(t), we obtain the bare action with the counter term

1

gB
=

1

g(t)
− 1

2
log(1 + 6Ht). (2.12)

By requiring the bare action is independent of the renormalization scale: namely cosmic
time t , we obtain the one loop β function.

β =
∂

∂ log(1 + 6Ht)
g(t) = −1

2
g2(t). (2.13)

3
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energy effective action around the Hubble scale. Such a theory is holographic and obeys
the renormalization group which guarantee the subtraction point independence. of the bare
quantity.

ρB = exp
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− 3g

4

Ht

2

∂2

∂ω2

)
ρ, (2.8)

We recall that −τµ ∼ 1 at the Horizon and 1/ − Hτ = exp(Ht). As
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µ dk/k ∼ − log µ =

−Ht, our renormalization scale(time) is Ht. The renormalization scale of the low energy
effective action is the Hubble scale. As ρB is independent of the renormalization scale, the
renormalized distribution function obeys the following renormalization group equation.

ρ̇− 3g

4
· H
2

∂2

∂ω2
ρ = 0, (2.9)

where Ȯ denotes a derivative of O with respect to the cosmic time t. The factor 3g/4 in the
diffusion term is the projection factor to the IR region. The conformal mode ω consists of
a minimally coupled field X. ω =

√
3X/4 + Y/4 [15, 16]. We neglect Y because it has the

effective mass m2 = 2H2. There is no drift term in the reduced space consisting only of X.
The gravitational FP equation (2.9) is obtained by integrating the quantum bulk modes
inside the horizon. It turns out to be a diffusion equation due to the lack of the drift term.
The solution performs the Brownian motion as it is jolted by the conformal zero modes. The
conformal zero modes are real stochastic noise. In contrast sub-horizon conformal modes are
quantum modes with the negative norm. The FP equation is a dynamical renormalization
group equation. We can sum up the IR logarithms logn a = (Ht)n by this equation to find
a running coupling g(t).
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The Hubble parameter H2(t)/H2 behaves as

V (ϕ) = 1 +
√
γκϕ = 1− 2γHt = 1− 3gHt. (3.6)

This should be compared with the scaling hypothesis

V (ϕ) = exp(
√
γκϕ) ∼ 1− 2γHt. (3.7)

The above agreement by the both linear and exponential potentials implies that we have
successfully summed up 1 loop IR logarithms by the scaling potential. The one-loop exact
entropy evaluated by the FP equation (2.11) is consistent with the perturbative classical
solution of (3.6) as S = −(1/g)(V ′/V )ϕ = 3Ht at Ht ≪ 1. Thus, the inflation theory with
the particular potential is equivalent to the quantum gravity specified by the FP equation,
at least locally.
This fact constitutes a strong evidence for a dS duality between Einstein gravity and an
inflation theory (or a quintessence theory). It is a duality between quantum/classical gravity
in dS space. It is likely that there are multiple elements in the universality class of quantum
gravity/inflation theory. The inflation era of the early Universe may be one of them and the
recent domination of dark energy could be another.
We evaluated the time evolution of g to the one loop order in (3.8). Taking into account the
higher loop corrections in g, the FP equation becomes as follows

∂

∂t
ρ− 3g

4
· H
2

∂2

∂ω2
ρ = 0 (3.8)

Substituting (2.3) into the above,

∂

∂t

1

2
log(

ξ

g
) + 3Hξ = 0 (3.9)

we obtain an important equation

∂

∂N
log

g

ξ
= 6ξ. (3.10)

See Appendix for a brief summary of Langevin equation. At large times, we assume the
distribution should be canonical.

ẋi = bi(t) (3.11)

Under such circumstances, we find the correlators of bi(t) by

bi(t1)bi(t2) = 2δijδ(t1 − t2)A (3.12)

The probability distribution of xi(t)− xi(0) is

P (xi, 0) =
N∏

1

(
1

4πtA
)
1
2 exp[−(xi − xi(0))2

4tA
] (3.13)
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We assume generic Gaussian

Master  equationThe probability P satisfies the diffusion equation.

∂P

∂t
= AΣN

1 (
∂

∂xi
)2P (3.14)

with the boundary condition

P (xi, 0) =
N∏

1

δ(xi − x(0)) (3.15)

We further note 2A = 3
4gH. Thus we conclude (3.10) follows from the Langevin picture also.

Firstly, we obtain an equation for ξ from Fokker-Planck equation. In the Gaussian approxi-
mation, the Fokker-Planck equation becomes

ξ̇
∂

∂ξ
ρ = ξ̇

( 1

2ξ
ρ− 4

g
ω2ρ

)
, () (3.16)

γH

4

∂2

∂ω2
ρ = −3Hξρ+ 3Hξ2

8

g
ω2ρ. (3.17)

We obtain the equation of our target:

ξ̇ = −6Hξ2. (3.18)

The solution is

ξ =
1

1 + 6Ht
. (3.19)

– With a constant g and ξ = 1/6N , we finally find (3.19) is consistent with (3.10).
In the literature, δN formalism is widely used to investigate the curvature perturbation. It
underscores the validity of the stochastic picture of the inflation [9], [10–13]. Let us consider
the fluctuation of the curvature perturbation ζ.

ζ = δN =
H

ϕ̇
δϕ,

< δϕ(t)δϕ(t′) > = (
H2

4π2
)Hδ(t− t′). (3.20)

We obtain in the super-horizon regime:

< ζ2(t) > =< (
H

ϕ̇
)2δϕ2 >

=
1

2ϵM2
P

< δϕ2 > (3.21)

= <
H2

8π2ϵM2
P

>=
g

ϵ
= P (3.22)
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g: constant Large N limit



We recall the following identity holds at the horizon exit t = t∗

ρ̇(t∗)e
ρ(t∗) = k (3.22)

It is nothing but choosing our renormalization scale as log k = Ht.

k

dk
(4 log ρ̇(t∗)− 2 log φ̇(t∗)) (3.23)

=
1

Hdt∗
(4 log ρ̇(t∗)− 2 log φ̇(t∗)) (3.24)

=
4ρ̈

ρ̇2(t∗)
− 2

φ̈

φ̇ρ̇
(3.25)

It boils down to

−2
φ̇2

˙ρ(t∗)2
− 2

φ̈

φ̇ρ̇
= 2(η − 3ϵ) (3.26)

where

ϵ =
φ̇2

2H2
, η =

φ̈

ρ̇φ̇
+ ϵ (3.27)

The curvature perturbation ζ and conformal mode ω obey analogous Langevin type equations
(3.20) and (3.12).

< ω2(t) >=
g

8ξ
=

3g

4
N(t) (3.28)

In power inflation potential models V ∼ fm, ξ and ϵ are identical up to a constant factor.
They belong to the same universality class as two point functions (3.12) and (3.22) scale in
the same way : k1−ns .
It is because < ζ2 >∝< ω2 > as ξ ∝ ϵ. The conformal mode is indistinguishable from
the curvature perturbation. Our identification of the scalar perturbation therefore works in
generic quantum gravity with conformal mode or inflation theory with curvature perturba-
tion. The advantage of conformal mode is being Lorentz scalar, well understood in covariant
field theory. The precise coefficient in P = Dg needs to be fit with the data. We assume it
is O(1).
There is a UV fixed point in quantum gravity. We briefly study it. FP equation (3.10)
enables us to evaluate higher order corrections to the β function. The expansion parameter
is 1/ logN . We can confirm that the following g and ξ satisfies (3.10),

g =
2

logN

(
1− 1

logN

)
, ξ =

1

6N

(
1− 1

logN

)
. (3.29)

Thus, the β function, ϵ and the entropy generation rate are given by

β =
∂

∂ logN
g =

2

log2 N
− 4

log(N)3
(3.30)
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ϵ = −1

2

∂

∂N
log(g) = − 1

2gN
βg (3.31)

∂

∂N
S = −1

2

∂

∂N
log

ξ

g

=
1

2N

(
1− 1

logN

)
. (3.32)

A remarkable feature is that the coupling has the maximum value g = 1/2 at the beginning.
It steadily decreases toward the future as the β function is negative in the whole region of
time flow. It has two fixed points at the beginning and at the future of the Universe. The
existence of the UV fixed point may indicate the consistency of quantum gravity. The single
stone solves the ϵ problem (3.32) as well since it vanishes at the fixed point. The β function
describes a scenario that our Universe started the dS expansion with a minimal entropy
S = 2 while it has S = 10120 now. Since we work with the Gaussian approximation, our
results on the UV fixed points are not water tight as the coupling is not weak. Nevertheless
we find it remarkable that they support the idea that quantum gravity has a UV fixed point
with a finite coupling. In fact 4 dimensional de Sitter space is constructed in the target space
at the UV fixed point of 2 + ϵ dimensional quantum gravity [21]. 4 dimensional de Sitter
space also appears at the UV fixed point of the exact renormalization group [22] [23].
Such a theory might be a strongly interacting conformal field theory. However, it is not an
ordinary field theory as the Hubble scale is Planck scale. Our dynamical β function is closely
related to the cosmological horizon and physics around it. The existence of the UV fixed
point could solve the trans-Planckian physics problem. A consistent quantum gravity theory
can be constructed under the assumption that there are no degrees of freedom at trans-
Planckian physics [27]. In this sense, it is consistent with string theory and matrix models.
The Universe might be governed by (3.30) in the beginning as it might be indispensable to
construct the UV finite solutions of the FP equation.
In fact, the equation (3.10) has another class of solutions: power potentials.

g = N
m
2 , ξ =

m+ 2

12N
. (3.33)

The inflaton may be identified as f = N1/2 by inspecting g ∝ Nm/2 = fm. g ∼ fm ∼ H2GN ,
this is a small field solution 6ξ = 1 − ns measures the tilt of the scalar two point function.
We thus conclude:

ϵ =
1

2

∂

∂N
log(H2) =

m

4N
, 1− ns =

m+ 2

2N
. (3.34)

In this case, the concave power solutions can be obtained by formally replacing m by 1/n.

ϵ =
1

2

∂

∂N
log(H2) =

1

4nN
, 1− ns =

1/n+ 2

2N
. (3.35)
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We recall the following identity holds at the horizon exit t = t∗

ρ̇(t∗)e
ρ(t∗) = k (3.22)

It is nothing but choosing our renormalization scale as log k = Ht.

k

dk
(4 log ρ̇(t∗)− 2 log φ̇(t∗)) (3.23)

=
1

Hdt∗
(4 log ρ̇(t∗)− 2 log φ̇(t∗)) (3.24)

=
4ρ̈

ρ̇2(t∗)
− 2

φ̈

φ̇ρ̇
(3.25)

It boils down to

−2
φ̇2

˙ρ(t∗)2
− 2

φ̈

φ̇ρ̇
= 2(η − 3ϵ) (3.26)

where

ϵ =
φ̇2

2H2
, η =

φ̈

ρ̇φ̇
+ ϵ (3.27)

The curvature perturbation ζ and conformal mode ω obey analogous Langevin type equations
(3.20) and (3.12).

< ω2(t) >=
g

8ξ
=

3g

4
N(t) (3.28)

In power inflation potential models V ∼ fm, ξ and ϵ are identical up to a constant factor.
They belong to the same universality class as two point functions (3.12) and (3.22) scale in
the same way : k1−ns .
It is because < ζ2 >∝< ω2 > as ξ ∝ ϵ. The conformal mode is indistinguishable from
the curvature perturbation. Our identification of the scalar perturbation therefore works in
generic quantum gravity with conformal mode or inflation theory with curvature perturba-
tion. The advantage of conformal mode is being Lorentz scalar, well understood in covariant
field theory. The precise coefficient in P = Dg needs to be fit with the data. We assume it
is O(1).
There is a UV fixed point in quantum gravity. We briefly study it. FP equation (3.10)
enables us to evaluate higher order corrections to the β function. The expansion parameter
is 1/ logN . We can confirm that the following g and ξ satisfies (3.10),

g =
2

logN

(
1− 1

logN

)
, ξ =

1

6N

(
1− 1

logN

)
. (3.29)

Thus, the β function, ϵ and the entropy generation rate are given by

β =
∂

∂ logN
g =

2

log2 N
− 4

log(N)3
(3.30)
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Explicit solutions of power potentials

Concave solutions maybe obtained by m       1/n: (m,n integers)

We recall here the curvature perturbation:

P ∼ H2

(2π)22M2
P ϵ

∼ 2.2× 10−9 (3.36)

We need to change the direction of the time flow by replacing N by Ñ where Ñ = Ne −N
and Ne denotes the e-foldings at the end of inflation.
(3.34) shows ϵ and ξ are related as

ϵ =
m

4Ñ
=

3m

m+ 2
ξ

(3.37)

The solution (3.34) reproduces H2 and ϵ for the fm inflaton potential after the time reversal:

H2 ∝ Ñ
m
2 ,

ϵ =
m

4Ñ
, (3.38)

where Ñ = Ne −N and Ne denotes the e-foldings at the end of inflation.
The left-hand side of (3.10) can be identified with (1−ns) after the time reversal, where ns is
the scalar spectral index. Let us recall that (1−ns) is expressed by the slow-roll parameters
ϵ and η,

1− ns = 6ϵ− 2η. (3.39)

With the identification (3.36), the equation (3.10) is equivalent to (3.40) for the fm inflaton
potential where η = (m − 1)/(2Ñ). Our FP equation is derived to describe the dynamics
of the conformal zero mode. It is a surprise to find an inflation theory as its solution. This
fact gives another evidence for the dS duality.
Although the dS entropy can be explained by quantum effects alone for the weakly coupled
inflaton solution, the strongly coupled inflaton solution is a dual object in the sense that
geometrical description is reliable. The increase of the entropy S = 1/g can be evaluated
by the first law T∆S = ∆E where ∆E is the incoming energy flux of the inflaton Ḣ(t) =
−4πGN ḟ 2 [28].
The solution (3.30) is UV complete as g has a finite maximum value. However, it cannot
end the inflation as ϵ = −(1/2)∂ log g/∂N ∼ 1/(2N logN) decreases with time. On the
other hand, the solution (3.34) with the time reversal is not UV complete but it can end the
inflation as ϵ ∼ 1/Ñ increases with time. These solutions generate the entropy in different
ways: 1/g ∼ logN for the former and 1/g ∼ 1/Ñ

1
2 for the latter. From the perspective of the

dominant entropy principle, (3.30) is chosen initially and (3.34) is chosen after logN ∼ 1/Ñ
1
2 .

That is to say,
√
g
1
in (3.30) describes the just born Universe and

√
g
2
in (3.34) describes

the inflation era.
The UV fixed point endows with a special initial condition for the inflation theory. ϵ vanishes
at the UV fixed point while it grows subsequently (3.36). It thus resolves the fine-tuning
problem for inflation [29].
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Here we introduce an integration constant c. m denotes positive integers: V (fm). We may
change the direction of the time flow by replacing N by Ñ where Ñ = Ne −N . Ne denotes
the e-foldings at the end of inflation.

The inflaton may be identified with the stochastic variable f whose correlators show char-
acteristic features of Brownian motion. < f 2 >= Ñ and g ∝ Ñm/2 =< fm >. 6ξ = 1 − ns

measures the extra tilt of the scalar two point function k1−ns with respect to k. We thus
conclude:

ϵ = −1

2

∂

∂N
log(H2) =

m

4Ñ
,

1− ns = 6ξ =
m+ 2

2Ñ
. (4.2)

In this case, the concave power solutions can be obtained by formally replacingm by 1/n. We
admit it is not clear why concave potentials are relevant. The convex functions are excluded
by Lyth bound. They have trans Planckian problem. In contrast, concave potentials are free
from this problem.

ϵ = −1

2

∂

∂N
log(H2) =

1

4nÑ
,

1− ns =
1
n + 2

2Ñ
. (4.3)

The concave potentials are promising avenue to explore now.

n = 1, 2, 3, → ∞,

ϵ =
1

4Ñ
,
1

8Ñ
,

1

12Ñ
,→ 0,

1− ns =
3

2Ñ
,
5

4Ñ
,
9

8Ñ
,→ 1

Ñ
(4.4)

We note 1 − ns is bounded from below by 1/Ñ while r = 16ϵ is not. It is consistent with
the current observation. It is important to establish the bound on n. We recall here the
curvature perturbation:

P ∼ H2

(2π)22M2
P ϵ

∼ 2.2× 10−9 (4.5)

It is clearly related to the question on the change of H2 during inflation. It is bounded from
below g > 10−11 as ϵ > 1/200.

(4.1) shows ϵ and ξ are related as

ϵ =
m

4Ñ
=

3m

m+ 2
ξ

(4.6)
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We recall the following identity holds at the horizon exit t = t∗

ρ̇(t∗)e
ρ(t∗) = k (3.22)

It is nothing but choosing our renormalization scale as log k = Ht.

k

dk
(4 log ρ̇(t∗)− 2 log φ̇(t∗)) (3.23)

=
1

Hdt∗
(4 log ρ̇(t∗)− 2 log φ̇(t∗)) (3.24)

=
4ρ̈

ρ̇2(t∗)
− 2

φ̈

φ̇ρ̇
(3.25)

It boils down to

−2
φ̇2

˙ρ(t∗)2
− 2

φ̈

φ̇ρ̇
= 2(η − 3ϵ) (3.26)

where

ϵ =
φ̇2

2H2
, η =

φ̈

ρ̇φ̇
+ ϵ (3.27)

The curvature perturbation ζ and conformal mode ω obey analogous Langevin type equations
(3.20) and (3.12).

< ω2(t) >=
g

8ξ
=

3g

4
N(t) (3.28)

In power inflation potential models V ∼ fm, ξ and ϵ are identical up to a constant factor.
They belong to the same universality class as two point functions (3.12) and (3.22) scale in
the same way : k1−ns .
It is because < ζ2 >∝< ω2 > as ξ ∝ ϵ. The conformal mode is indistinguishable from
the curvature perturbation. Our identification of the scalar perturbation therefore works in
generic quantum gravity with conformal mode or inflation theory with curvature perturba-
tion. The advantage of conformal mode is being Lorentz scalar, well understood in covariant
field theory. The precise coefficient in P = Dg needs to be fit with the data. We assume it
is O(1).
There is a UV fixed point in quantum gravity. We briefly study it. FP equation (3.10)
enables us to evaluate higher order corrections to the β function. The expansion parameter
is 1/ logN . We can confirm that the following g and ξ satisfies (3.10),

g =
2

logN

(
1− 1

logN

)
, ξ =

1

6N

(
1− 1

logN

)
. (3.29)

Thus, the β function, ϵ and the entropy generation rate are given by

β =
∂

∂ logN
g =

2

log2 N
− 4

log(N)3
(3.30)

7

We recall the following identity holds at the horizon exit t = t∗

ρ̇(t∗)e
ρ(t∗) = k (3.22)

It is nothing but choosing our renormalization scale as log k = Ht.

k

dk
(4 log ρ̇(t∗)− 2 log φ̇(t∗)) (3.23)

=
1

Hdt∗
(4 log ρ̇(t∗)− 2 log φ̇(t∗)) (3.24)

=
4ρ̈

ρ̇2(t∗)
− 2

φ̈

φ̇ρ̇
(3.25)

It boils down to

−2
φ̇2

˙ρ(t∗)2
− 2

φ̈

φ̇ρ̇
= 2(η − 3ϵ) (3.26)

where

ϵ =
φ̇2

2H2
, η =

φ̈

ρ̇φ̇
+ ϵ (3.27)

The curvature perturbation ζ and conformal mode ω obey analogous Langevin type equations
(3.20) and (3.12).

< ω2(t) >=
g

8ξ
=

3g

4
N(t) (3.28)

In power inflation potential models V ∼ fm, ξ and ϵ are identical up to a constant factor.
They belong to the same universality class as two point functions (3.12) and (3.22) scale in
the same way : k1−ns .
It is because < ζ2 >∝< ω2 > as ξ ∝ ϵ. The conformal mode is indistinguishable from
the curvature perturbation. Our identification of the scalar perturbation therefore works in
generic quantum gravity with conformal mode or inflation theory with curvature perturba-
tion. The advantage of conformal mode is being Lorentz scalar, well understood in covariant
field theory. The precise coefficient in P = Dg needs to be fit with the data. We assume it
is O(1).
There is a UV fixed point in quantum gravity. We briefly study it. FP equation (3.10)
enables us to evaluate higher order corrections to the β function. The expansion parameter
is 1/ logN . We can confirm that the following g and ξ satisfies (3.10),

g =
2

logN

(
1− 1

logN

)
, ξ =

1

6N

(
1− 1

logN

)
. (3.29)

Thus, the β function, ϵ and the entropy generation rate are given by
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ϵ = −1

2

∂

∂N
log(g) = − 1

2gN
βg (3.31)

∂

∂N
S = −1

2

∂

∂N
log

ξ

g

=
1

2N

(
1− 1

logN

)
. (3.32)

A remarkable feature is that the coupling has the maximum value g = 1/2 at the beginning.
It steadily decreases toward the future as the β function is negative in the whole region of
time flow. It has two fixed points at the beginning and at the future of the Universe. The
existence of the UV fixed point may indicate the consistency of quantum gravity. The single
stone solves the ϵ problem (3.32) as well since it vanishes at the fixed point. The β function
describes a scenario that our Universe started the dS expansion with a minimal entropy
S = 2 while it has S = 10120 now. Since we work with the Gaussian approximation, our
results on the UV fixed points are not water tight as the coupling is not weak. Nevertheless
we find it remarkable that they support the idea that quantum gravity has a UV fixed point
with a finite coupling. In fact 4 dimensional de Sitter space is constructed in the target space
at the UV fixed point of 2 + ϵ dimensional quantum gravity [21]. 4 dimensional de Sitter
space also appears at the UV fixed point of the exact renormalization group [22] [23].
Such a theory might be a strongly interacting conformal field theory. However, it is not an
ordinary field theory as the Hubble scale is Planck scale. Our dynamical β function is closely
related to the cosmological horizon and physics around it. The existence of the UV fixed
point could solve the trans-Planckian physics problem. A consistent quantum gravity theory
can be constructed under the assumption that there are no degrees of freedom at trans-
Planckian physics [27]. In this sense, it is consistent with string theory and matrix models.
The Universe might be governed by (3.30) in the beginning as it might be indispensable to
construct the UV finite solutions of the FP equation.
In fact, the equation (3.10) has another class of solutions: power potentials.

g = N
m
2 , ξ =

m+ 2

12N
. (3.33)

The inflaton may be identified as f = N1/2 by inspecting g ∝ Nm/2 = fm. g ∼ fm ∼ H2GN ,
this is a small field solution 6ξ = 1 − ns measures the tilt of the scalar two point function.
We thus conclude:

ϵ =
1

2

∂

∂N
log(H2) =

m

4N
, 1− ns =

m+ 2

2N
. (3.34)

In this case, the concave power solutions can be obtained by formally replacing m by 1/n.

ϵ =
1

2

∂

∂N
log(H2) =

1

4nN
, 1− ns =

1/n+ 2

2N
. (3.35)
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𝜖 𝑣𝑎𝑛𝑖𝑠ℎ𝑒𝑠 𝑛𝑒𝑎𝑟 𝑈𝑉 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡

where

ϵ =
φ̇2

2H2
, η =

φ̈

ρ̇φ̇
+ ϵ (3.23)

The curvature perturbation ζ and conformal mode ω obey analogous Langevin type equations
(3.16) and the (A.3). The two point function of conformal mode is

< ω2(t) >=
g

8ξ
=

3g

4
N(t) (3.24)

In power inflation potential models V ∼ fm, ξ and ϵ are identical up to a constant factor.
They belong to the same universality class as two point functions (3.24) and (3.17) scale in
the same way : k1−ns = a1−ns = exp((1− ns)Ht).
It is because < ζ2 >= g/ϵ while < ω2 >= g/ξ. The conformal mode is indistinguishable
from the curvature perturbation. Our identification of the scalar perturbation therefore
works in generic quantum gravity with conformal mode or inflation theory with curvature
perturbation. The advantage of conformal mode is being Lorentz scalar, well understood in
covariant field theory. The precise coefficient in P = Dg needs to be fit with the data. We
assume it is O(1).
There is a UV fixed point in our renormalization group. We briefly study it. FP equation
(3.10) enables us to evaluate higher order corrections to the β function. The expansion
parameter is 1/ logN . We can confirm that the following g and ξ satisfies (3.10),

g =
2

logN

(
1− 1

logN

)
, ξ =

1

6N

(
1− 1

logN

)
. (3.25)

Thus, the β function, ϵ and the entropy generation rate are given by

β =
∂

∂ logN
g = − 2

log2 N
+

4

log(N)3
(3.26)

ϵ = −1

2

∂

∂N
log(g) = − 1

2gN
βg (3.27)

∂

∂N
S = −1

2

∂

∂N
log

ξ

g

=
1

2N

(
1− 1

logN

)
. (3.28)

A remarkable feature is that the coupling has the maximum value g = 1/2 at the beginning.
It steadily decreases toward the future as the β function is negative in the whole region of
time flow. It has two fixed points at the beginning and at the future of the Universe. The
existence of the UV fixed point may indicate the consistency of quantum gravity. The single
stone solves the ϵ problem (3.27) as well since it vanishes at the fixed point. The β function
describes a scenario that our Universe started the dS expansion with a minimal entropy
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Slow roll and Brownian motion

quantum gravity is determined by the FP equation which describes the stochastic process
at the horizon. We thus argue the classical solution of the inflation theory satisfies the FP
equation as well.

We have shown that the following linear inflaton potential is generated at the one-loop
level [14],

∫ √
−gd4x

1

16πGN

[
R−H2V (ϕ)− 1

2
∂µϕ∂

µϕ
]
. (3.1)

Let us examine the linear potential V (ϕ) = 1 +
√
γκϕ due to the 1-loop quantum IR

logarithm. The slow-roll parameters are

ϵ = (V ′/V )2/(16πGN) = γ = 3g/2. (3.2)

We confirm the relation between the slow-roll parameter and the slope of the linear potential
(3.2). Our conjecture is that the classical inflation theory (3.1) is dual to the IR quantum
effects in Einstein gravity.

The equation of motion in the slow-roll approximation is

3H(t)ϕ̇ = −6H2

κ

√
γ. (3.3)

Firstly, let us assume ϕ is small: i.e.
√
γκϕ < 1. The leading order solution is

ϕ
√
γκ = −2γHt, (3.4)

We obtain
√
4ϵN = κϕ. By squaring the both sides, we find 4ϵN2 ∼ N . In other words,

ϵ ∼ 1/4N .

This estimate is consistent with the known result in the slow roll on the linear potential,
ϵ = 1/4N . In the case of V ∼ fm, ϵ = m/4N > 1/4N for the convex potentials. On the
other hand, ϵ = 1/4nN < 1/4N for concave potentials. The former may suffer from the
trans-Planckian problem while the latter does not have such a problem except n ∼ 1. It
might be the reason why convex potentials are excluded by observations. The dS duality
is based on the possible equivalence between the slow roll in the inflation and the random
walk in the FP description. The consistency of the slow roll picture and the Brown motion
picture is at the heart of dS duality. It supports dS duality non-perturbatively.

These facts we have listed constitutes the evidences for dS duality between quantum effects
in Einstein gravity and an inflation theory (or a quintessence theory). It is a duality between
quantum/classical gravity in dS space. It is likely that there are multiple elements in the
universality class of quantum gravity/inflation theory. The inflation era of the early Universe
may be one of them. As we discuss shortly we find a pre-inflation era which is indispensable
to launch inflation era which in turn necessary to trigger the big bang.
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The probability P satisfies the diffusion equation.

∂P

∂t
= AΣN

1 (
∂

∂xi
)2P (3.14)

with the boundary condition

P (xi, 0) =
N∏

1

δ(xi − x(0)) (3.15)

We further note 2A = 3
4gH. Thus we conclude (3.10) follows from the Langevin picture also.

Firstly, we obtain an equation for ξ from Fokker-Planck equation. In the Gaussian approxi-
mation, the Fokker-Planck equation becomes

ξ̇
∂

∂ξ
ρ = ξ̇

( 1

2ξ
ρ− 4

g
ω2ρ

)
, () (3.16)

γH

4

∂2

∂ω2
ρ = −3Hξρ+ 3Hξ2

8

g
ω2ρ. (3.17)

We obtain the equation of our target:

ξ̇ = −6Hξ2. (3.18)

The solution is

ξ =
1

1 + 6Ht
. (3.19)

– With a constant g and ξ = 1/6N , we finally find (3.19) is consistent with (3.10).
In the literature, δN formalism is widely used to investigate the curvature perturbation. It
underscores the validity of the stochastic picture of the inflation [9], [10–13]. Let us consider
the fluctuation of the curvature perturbation ζ.

ζ = δN =
H

ϕ̇
δϕ,

< δϕ(t)δϕ(t′) > = (
H2

4π2
)Hδ(t− t′). (3.20)

We obtain in the super-horizon regime:

< ζ2(t) > =< (
H

ϕ̇
)2δϕ2 >

=
1

2ϵM2
P

< δϕ2 > (3.21)

= <
H2

8π2ϵM2
P

>=
g

ϵ
= P (3.22)
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