Gauge kinetic mixing and dark topological defects

Rikkyo University

"Gauge kinetic mixing and dark topological defects" Takashi Hiramatsu, Masahiro Ibe, Motoo Suzuki, Soma Yamaguchi

Submitted to JHEP, arXiv:2109.12771

Consider $SU(2)_D \xrightarrow{\mathbf{3}} U(1)_D \xrightarrow{\mathbf{3}} \mathbb{Z}_2$ in the presence of gauge kinetic mixing with $U(1)_{\text{QED}}$, and discuss the effect of the defects.

A hidden U(1) gauge field with the kinetic mixing to SM

- SIDM can resolve the small-scale structure problems (core-cusp/diversity/missing satelites/TBTF) Tulin, Yu, Phys.Rep.730 (2018) 1 Kaplinghat, Tulin, Yu, PRL 116 (2016) 041302
- $U(1)_{B-L}$ provides the small neutrino mass through the seesaw mechanism and its residual discrete symmetry stabilises DM.
- Transferring large entropy in dark sector to SM

Ibe, Kamada, Kobayashi, Nakano, JHEP 11 (2018) 203

Spontaneously breaking of non-Abelian gauge symmetry to U(1) :

- Non-Abelian theories are UV complete thanks to the asymptotically-free nature, while U(1) is not.

Experiments for dark photon search Bauer, Foldenauer, Jaeckel, JHEP 07 (2018) 094

Model : w/o kinetic mixing

$$\begin{split} \mathcal{L} &= -\frac{1}{4} F'^{a}_{\ \mu\nu} F'^{a\mu\nu} - \frac{1}{2} D_{\mu} \phi^{a}_{1} D^{\mu} \phi^{a}_{1} - \frac{1}{2} D_{\mu} \phi^{a}_{2} D^{\mu} \phi^{a}_{2} - V(\phi_{1}, \phi_{2}) \\ &\text{dark SU(2)} \\ V(\phi_{1}, \phi_{2}) &= \frac{\lambda_{1}}{4} (\phi_{1} \cdot \phi_{1} - v_{1}^{2})^{2} + \frac{\lambda_{2}}{4} (\phi_{2} \cdot \phi_{2} - v_{2}^{2})^{2} + \frac{\kappa}{2} (\phi_{1} \cdot \phi_{2})^{2} \\ D_{\mu} \phi^{a} &= \partial_{\mu} \phi^{a} - ig \epsilon^{abc} A'^{b}_{\mu} \phi^{c} \end{split}$$

Ansatz for a static monopole

$$\phi^a = vH(r)\frac{x^a}{r} \qquad A_i'^a = \frac{1}{g}\frac{\epsilon^{aij}x^j}{r^2}F(r) \qquad \begin{array}{l} H(r), F(r) \to 0 \quad (r \to 0) \\ H(r), F(r) \to 1 \quad (r \to \infty) \end{array}$$

Magnetic charge carried by a monopole

$$\mathcal{F}'_{\mu\nu} \equiv \frac{1}{v} \phi^a F'^a_{\mu\nu} \qquad Q'_M = \frac{1}{2} \int_{r \to \infty} dS_{ij} \mathcal{F}^{ij} = -\frac{4\pi}{g}$$

Maxwell equation and Bianchi identity

$$\partial_{\mu} \widetilde{\mathcal{F}}^{\prime \mu \nu} = 0$$
 everywhere
 $\partial_{\mu} \widetilde{\mathcal{F}}^{\prime \mu \nu} \approx 0$ only for $r \gg (gv)^{-1}$ \longrightarrow Dark photon defined in this way cannot be defined grobally

String solution

After the transition of
$$SU(2)_D \xrightarrow{\mathbf{3}} U(1)_D$$
 ($\phi_1^a = v_1 \delta^{a3}$)

$$\mathcal{L} \longrightarrow -\frac{1}{4} F_{\mu\nu}^{\prime 3} F^{\prime 3\mu\nu} - \frac{1}{2} D_{\mu} \phi_2^a D^{\mu} \phi_2^a - V(v_1, \phi_2)$$

(other two gauge fields are massive)

Ansatz for a static string

$$\phi^{a} = vh(\rho)e^{in\varphi} \quad A_{i}^{\prime a} = -\frac{n}{g}\frac{\epsilon_{ij}x^{j}}{\rho^{2}}f(\rho) \quad \frac{h(r), f(r) \to 0 \quad (\rho \to 0)}{h(\rho), f(\rho) \to 1 \quad (\rho \to \infty)}$$

Magnetic flux carried by a string

$$\Phi(n) = \frac{1}{2} \int dS_i \epsilon_{ijk} F^{\prime 3jk} = \frac{2\pi n}{g}$$

Beads solution

Kibble, Vachaspati, J. Phys. G 42 (2015) 094002 [arXiv:1506.02022]

Relevant winding number of string is $\{0, 1\} \cong \mathbb{Z}_2$

Numerical simulation

Cosmological simulation of beads network (= "necklace")

grid size	384	
$aL/H^{-1} _{\rm in}$	60	
$aL/H^{-1} _{\text{fin}}$	2	Use Press-Ryden-Spergel algorithm
Background	Radiation dominant	$\lambda_i(\eta) = \frac{\lambda_{i,\text{in}}}{a^2}$
$\epsilon = v_1 / \Lambda$	0.2	
$\lambda_{1,\mathrm{in}}$	1.0	$g(\eta) = rac{g_{ ext{in}}}{a}$
$\lambda_{2,\mathrm{in}}$	1.0	to maintain the size of
κ	2.0	monopole/string
v_{2}/v_{1}	0.3	
$g_{ m in}$	$1/\sqrt{2}$	

Necklace has the scaling property.

Hindmarsh, Rummukainen, Weir, PRD 95 (2017) 063520 [arXiv:1611.08456]

Necklace = beads network

There are no n = 2 strings, which rapidly decay by their tension and the annihilation of monopoles.

Model : + kinetic mixing

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'^{a}_{\ \mu\nu} F'^{a\mu\nu} + \frac{\phi_{1}^{a}}{2\Lambda} F'^{a}_{\ \mu\nu} F^{\mu\nu} \\ &\text{visible U(1) hidden SU(2) mixing} \\ &- \frac{1}{2} D_{\mu} \phi_{1}^{a} D^{\mu} \phi_{1}^{a} - \frac{1}{2} D_{\mu} \phi_{2}^{a} D^{\mu} \phi_{2}^{a} - V(\phi_{1}, \phi_{2}) \\ &3\text{-rep. in SU(2)} \end{aligned}$$
$$V(\phi_{1}, \phi_{2}) &= \frac{\lambda_{1}}{4} (\phi_{1} \cdot \phi_{1} - v_{1}^{2})^{2} + \frac{\lambda_{2}}{4} (\phi_{2} \cdot \phi_{2} - v_{2}^{2})^{2} + \frac{\kappa}{2} (\phi_{1} \cdot \phi_{2})^{2} \\ D_{\mu} \phi^{a} &= \partial_{\mu} \phi^{a} - ig \epsilon^{abc} A_{\mu}^{\prime b} \phi^{c} \end{aligned}$$

Breaking pettern :
$$SU(2)_D \xrightarrow{3} U(1)_D \xrightarrow{3} \mathbb{Z}_2$$

beads \longrightarrow U(1) flux
 $\frac{\phi^a}{2\Lambda} F'^a_{\mu\nu} F^{\mu\nu}$

Induced U(1) magnetic field

Instead, strings can do it. Defining $B^{(\text{QED})}_{\mu} \equiv \frac{1}{2} \epsilon_{\mu\alpha\beta} F^{\alpha\beta}$, we expect the resultant field would look like two glued solenoids.

Effective field strength of dark sector

We'd like to see the field strength around monopoles.

But,
$$\mathcal{F}'_{\mu\nu} \equiv \frac{1}{v_1} \phi_1^a F'^a_{\mu\nu}$$
 is relevant only for $r \gg (gv)^{-1}$.

New effective field strength

$$\begin{split} F_{\mu\nu}^{\prime(\text{eff})} &= \frac{1}{|\phi|} \phi^{a} (\partial_{\mu} A_{\nu}^{\prime a} - \partial_{\nu} A_{\mu}^{\prime a} + g \epsilon^{abc} A_{\mu}^{\prime b} A_{\nu}^{\prime c}) - \frac{1}{g |\phi|^{3}} \epsilon_{abc} \phi^{a} D_{\mu} \phi^{b} D_{\nu} \phi^{c} \\ \stackrel{\text{``t Hooft, NPB 79 (1974) 276}}{} \\ A_{\mu}^{\prime 1} &= A_{\mu}^{\prime 2} = 0, A_{\mu}^{\prime 3} \neq 0, \phi^{1} = \phi^{2} = 0, \phi^{3} \neq 0 \\ \stackrel{\text{'`t Hooft, NPB 79 (1974) 276}}{} \\ F_{\mu\nu}^{\prime(\text{eff})} &= \partial_{\mu} A_{\nu}^{\prime 3} - \partial_{\nu} A_{\mu}^{\prime 3} \quad \text{looks like U(1)} \end{split}$$

Effective magnetic field / QED magnetic field

$$B_i^{\prime(\text{eff})} = \frac{1}{2} \epsilon_{ijk} F_{jk}^{\prime(\text{eff})} \qquad B_i^{(\text{QED})} = \frac{1}{2} \epsilon_{ijk} F_{jk}$$

Gauge kinetic mixing

Numerical simulation

Cosmological simulation of beads network (=Necklace)

grid size $aL/H^{-1} _{ m in}$ $aL/H^{-1} _{ m fin}$ Background $\epsilon=v_1/\Lambda$ λ_1	256 30 0.2 Radiation dominant 0.2 1.0	Use Press-Ryden-Spergel algorithm $\lambda_i(\eta) = \frac{\lambda_{i,in}}{a^2}$ $g(\eta) = \frac{g_{in}}{a}$ to maintain the size of monopole/string
$egin{array}{c} \kappa & & \ v_2/v_1 & & \ g & & \end{array}$	1.0 2.0 0.3 $1/\sqrt{2}$	Perform simulations for longer time than before so that box size becomes smaller than horizon size.
		strings straighten

Magnetic field on necklace

 $B_i^{\prime (\mathrm{eff})}$

 $B_i^{\prime (
m QED)}$

How to draw a stremline

- 1. Identify the volume, V, satisfying $|\phi_1| < \frac{v_1}{2}$ centred at a monopole.
- 2. Generate starting points on a 2-sphere with radius r_* .
- 3a. Solve the following equation from $\zeta = 0$ to $\zeta > 0$ (red line)

$$\frac{d\boldsymbol{x}_s}{d\zeta} = \boldsymbol{B}(\boldsymbol{x}_s(\zeta))$$

3b. Solve it from $\zeta = 0$ to $\zeta < 0$ (blue line)

Streamline

Effective field strength

The dark magnetic flux is well confined into a string, while the associated QED magnetic flux imitates the Hedgehog configuration like a monopole.

Dark monopoles are always connected to strings.

 \rightarrow Monopoles can move only along strings.

(if the string network in this model has the scaling property,...) The number of strings is only a few in the cosmological horizon.

- \rightarrow Only a few dark monopoles would exist in our Universe.
- → evading the astrophysical bounds like Paker's bound (upper limit from Galactic magnetic field)

We study the topological defects in a non-abelian model realising $SU(2)_D \xrightarrow{3} U(1)_D \xrightarrow{3} \mathbb{Z}_2$ with gauge kinetic mixing.

- Hybrid defect 'necklace' (beads network) appears.
- Necklace confines dark magnetic flux from 't Hooft-Polyakov monopoles
- Dark U(1) gauge field can induce QED magnetic flux through the kinetic mixing, mimicking QED monopoles.