# Possibility of multi－step electroweak phase transition in the two Higgs doublet models 

Hiroto Shibuya
（Kanazawa Univ．）

Mayumi Aoki，Takatoshi Komatsu，H．S．［arXiv：2106．03439］

素粒子現象論研究会＠大阪市立大学

## Introduction

## Baryogenesis (BG)

We still do not know how baryons were produced...

$$
\frac{n_{B}}{s}=\underset{[\text { Plank Collaboration ('18)] }}{(8.59 \pm 0.08) \times 10^{-11}} \quad \begin{gathered}
n_{B} \\
s
\end{gathered}: \text { number density of baryons }
$$

## Sakharov's conditions in the SM

To achieve BG, the Sakharov's conditions must be satisfied,
[Sakharov ('91)]

1. $B$ violation
2. $C$ and $C P$ violation $\quad \rightarrow \times$ (CKM phase is too small.)
3. Departure from equilibrium $\rightarrow \times$ (EWPT is not first order.)

In the SM, EWPT becomes first order when $m_{h} \lesssim 70 \mathrm{GeV}$.
[Kajantie et al. ('95); Csikor et al. ('99)]

## Motivation for Multi-step EWPT

As a one of the scalar extensions, we consider Two Higgs Doublet Models (2HDMs).

## Sakharov's conditions in the 2HDMs

1. B violation
2. $C$ and $C P$ violation $\rightarrow \triangle$ (EDM exp. constrain strictly)
[Haarr, et al. ('16); Cheng, et al.('17)]
3. Departure from equilibrium $\rightarrow \bigcirc$ (EWPT can be first order)

However, this is in the case of a 1 -step PT.
(The PT occurs just one time)
If we consider a multi-step PT,
EWBG has possibility to be achieved!

## Two Higgs Doublet Model

2 HDM is a model added one more $\mathrm{SU}(2)$ doublet to SM . $V_{0}\left(\Phi_{1}, \Phi_{2}\right)=-m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1}-m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2}-m_{3}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}+\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)$

$$
+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left(\Phi_{2}^{\dagger} \Phi_{1}\right)^{2}\right]
$$

$\Phi_{i}=\left(\begin{array}{c}w_{i}^{+} \\ \frac{v_{i}+h+i z_{i}}{+} \\ \sqrt{2}\end{array}\right)(i=1,2), \sqrt{v_{1}^{2}+v_{2}^{2}}=246 \mathrm{GeV}$

## Types of Yukawa interactions

To avoid FCNC processes, assume two doublets has different Yukawa couplings.

| Type | $u$ type | $d$ type | lepton |
| :---: | :---: | :---: | :---: |
| Type-I | $\Phi_{2}$ | $\Phi_{2}$ | $\Phi_{2}$ |
| Type-II | $\Phi_{2}$ | $\Phi_{1}$ | $\Phi_{1}$ |
| Type-X | $\Phi_{2}$ | $\Phi_{2}$ | $\Phi_{1}$ |
| Type-Y | $\Phi_{2}$ | $\Phi_{1}$ | $\Phi_{2}$ |

## The Effective Potential

## The one-loop corrected effective potential

 $V^{\beta}=V_{0}+V_{1}^{0}+V_{\mathrm{CT}}+{\overline{V_{1}}}_{1}^{\beta}$ Thermal effect( $V_{1}^{0}$ the one-loop contributions at zero temperature

$\left\{\begin{array}{l}V_{\mathrm{CT}} \text { the counter term for maintaining }\left\{\begin{array}{l}\text { the position of the minimum } \\ \text { the masses of scalar bosons }\end{array}\right.\end{array}\right.$
$\bar{V}_{1}^{\beta}$ the one-loop contributions at finite temperature

## Resummation [Parwani (92)]

We perform the numerical method for taking into account contributions from
"Daisy diagram." [Dolan, Jackiw (74)]


## Constraints

## Theoretical constraints

Bounded from below
Perturbative theory $\left|\lambda_{i}\right|<4 \pi$
Tree-level unitarity
Stability of EW vacuum (confirmed in $\left|\phi_{i}\right|<10 \mathrm{TeV}$ )

## Experimental constraints

## Electroweak precision data

$\rightarrow m_{H \pm}=m_{\text {CP-odd }}$ or $m_{\text {CP-even }}^{H}$ [Haber, o'Neil ('11)]
Flavor experiments
From $B_{d} \rightarrow \mu \mu, \tan \beta \gtrsim 2$ (Type-I)

$$
\alpha, \beta \text { mixing angles }
$$

Higgs couplings strength [ATLAS Collab. (19)]
$\rightarrow|\cos (\beta-\alpha)| \lesssim 0.25$ (for $\tan \beta \gtrsim 2$, Type-I)

## Pass of a multi-step EWPT

## First step PT



From the origin to $\phi_{2}$ axis, (strongly) 1st order PT occurs.

## Second step PT



From $\phi_{2}$ axis to EW vacuum, 1st or 2nd order PT occurs.

## Pass of a multi-step EWPT

## First step PT

Second step PT


From the origin to $\phi_{2}$ axis, (strongly) 1st order PT occurs.


From $\phi_{2}$ axis to EW vacuum, 1st or 2nd order PT occurs.

Above pass is realized when m 3 is small enough because $V_{0}\left(\phi_{1}, \phi_{2}\right) \supset-m_{3}^{2} \phi_{1} \phi_{2}$. So, we take $0 \leq m_{3}^{2} \leq 100^{2} \mathrm{GeV}^{2}$.

## Pass of a multi-step EWPT

## First step PT

Second step PT


From the origin to $\phi_{2}$ axis, (strongly) 1st order PT occurs.


From $\phi_{2}$ axis to EW vacuum, 1st or 2nd order PT occurs.
"Strongly" means that the PT satisfies the condition for suppressing the sphaleron processes $v\left(T_{c}\right) / T_{c} \geq 1$. [Shaposhnikov ('86,'87,'88), Erratum(92)] 9

## Numerical Results

Case of Type-I ( $\mathbf{m}_{\mathbf{A}}=\mathbf{m}_{\mathbf{H}^{ \pm}}$) (we use CosmoTransitions)

| $m_{A}[\mathrm{GeV}]$ | $m_{H}[\mathrm{GeV}]$ | $\tan \beta$ | $\cos (\beta-\alpha)$ | $m_{3}^{2}\left[\mathrm{GeV}^{2}\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| $130-1000$ | $130-1000$ | $2-10$ | $-0.25-0.25$ | $0-10^{4}$ |

1-step PT vs. multi-step PT



Multi-step PTs have tendency to occur with $m_{A}-m_{H}<0$ and large $\left|m_{A}-m_{H}\right|$.

Case of Type-I ( $\mathbf{m}_{\mathbf{A}}=\mathbf{m}_{\mathbf{H}^{ \pm}}$) (we use CosmoTransitions)

| $m_{A}[\mathrm{GeV}]$ | $m_{H}[\mathrm{GeV}]$ | $\tan \beta$ | $\cos (\beta-\alpha)$ | $m_{3}^{2}\left[\mathrm{GeV}^{2}\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| $130-1000$ | $130-1000$ | $2-10$ | $-0.25-0.25$ | $0-10^{4}$ |

[Wainwright (12)]

2-step PT vs. "strong 2-step" PT ${ }^{\text {2-step PT where 1st step }}$ is strongly 1st order



Strong 2-step PTs only occur with

## Numerical Results

Case of Type-I $\left(\mathbf{m}_{\mathbf{A}}=\mathbf{m}_{\mathbf{H}^{ \pm}}\right)$(we use CosmoTransitions)

| $m_{A}[\mathrm{GeV}]$ | $m_{H}[\mathrm{GeV}]$ | $\tan \beta$ | $\cos (\beta-\alpha)$ | $m_{3}^{2}\left[\mathrm{GeV}^{2}\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| $130-1000$ | $130-1000$ | $2-10$ | $-0.25-0.25$ | $0-10^{4}$ |
|  |  |  |  |  |

## Features of regions for multi-step PTs

Features for multi-step ( \& strong 2-step) small $\tan \beta$ $\begin{array}{ll}\begin{array}{ll}\text { negative } \& & \text { small } \cos (\beta-\alpha) \\ \text { small } m_{3}^{2}\end{array} & \begin{array}{l}\text { related } \\ \text { with } m_{2}^{2}\end{array}\end{array}$


To move to $\phi_{2}$ axis at the 1 st step PT, $m_{2}^{2}$ is need to be small enough.


$$
V_{0}\left(\phi_{1}, \phi_{2}\right) \supset m_{2}^{2} \phi_{2}^{2}-m_{3}^{2} \phi_{1} \phi_{2}
$$

If $m_{3}^{2}$ is too large, the PT would only occur just one time (which is 1 -step PT).

## Higgs trilinear couplings

The deviation of the Higgs trilinear coupling from that in SM

$$
\lambda_{h h h}=\left.\frac{\partial^{3} V_{\mathrm{eff}}}{\partial h^{3}}\right|_{\langle\phi\rangle}, \quad \delta \lambda_{h h h} \equiv \frac{\lambda_{h h h}-\lambda_{h h h \mathrm{SM}}}{\lambda_{h h h \mathrm{SM}}}{ }_{h-\mathrm{S}^{\prime}}^{\text {SM-like Higgs, }} h
$$




The deviations have a tendency to increase when the multi-step PTs occur. Especially, the deviations with the strong 2 -step PTs are about 50\%-250\%.

## Case of fixing parameters

When we fix as $\tan \beta=2, \cos (\beta-\alpha)=-0.2$, and $m_{3}^{2}=0 \mathrm{GeV}^{2}$,


Divided into 1 -step \& multi-step PTs!

When $\delta \lambda_{h h h} \simeq 1.5$, the multi-step PTs occur at $m_{A} \simeq 400-440 \mathrm{GeV}$ and the strong 2 -step PTs at $m_{A} \simeq 440 \mathrm{GeV}$.
The trilinear coupling is a important observable for multi-step!

## Multi-peaked Gravitational Wave

## Sources of GW from a PT

There are three sources producing the GWs $\Omega_{\mathrm{GW}} \simeq \Omega_{\mathrm{coli}}+\underset{\text { dominant }}{\Omega_{\mathrm{sw}}}+\Omega_{\text {turb }}$ [Bian, Liu (18)]

The GWs from a 2-step PT



$$
\begin{aligned}
& m_{A}=m_{H^{ \pm}}=490 \mathrm{GeV} \\
& m_{H}=300 \mathrm{GeV} \\
& \tan \beta=2.3 \\
& \cos (\beta-\alpha)=-0.21 \\
& m_{3}^{2}=400 \mathrm{GeV}^{2} \\
& \delta \lambda_{h h h} \simeq 2.2 \\
& \xi_{1}=2.1, \xi_{2}=4.2
\end{aligned}
$$

## The other Types

Type-I $\left(m_{H}=m_{H^{ \pm}}\right)$
Similar features obtained as in the case of $m_{A}=m_{H^{ \pm}}$.
Type-X $\left(m_{A}\right.$ or $\left.m_{H}=m_{H^{ \pm}}, \cos (\beta-\alpha)=0\right)$
Similar features are obtained, but strict constraints from the exotic decay modes $H \rightarrow A Z$ \& $A \rightarrow H Z$ exist.



## The other Types

Type-I $\left(m_{H}=m_{H^{ \pm}}\right)$
Similar features obtained as in the case of $m_{A}=m_{H^{ \pm}}$.
Type-X $\left(m_{A}\right.$ or $\left.m_{H}=m_{H^{ \pm}}, \cos (\beta-\alpha)=0\right)$
Similar features are obtained, but strict constraints from the exotic decay modes $H \rightarrow A Z$ \& $A \rightarrow H Z$ exist.

Type-II \& $\mathbf{Y}\left(m_{A}\right.$ or $\left.m_{H}=m_{H^{ \pm}}, \cos (\beta-\alpha)=0, m_{H^{ \pm}} \geq 590 \mathrm{GeV}\right)$
The EW vacuum is not the global minimum at $T=0$ because the exotic heavy scalar mass lifts up the potential at loop level.

We take $m_{3}^{2} \leq 100^{2} \mathrm{GeV}^{2}$.


## Summary

- In the CP-conserving 2 HDM , we find wide areas where the multi-step PTs occur and their features. $m_{A}-m_{H}<0$ (multi-step), $m_{A}-m_{H}>0$ (strong 2-step)
- The deviation of the Higgs trilinear coupling from that in SM has a tendency to increase when the multi-step PT occurs. Especially, the deviation is more than about $50 \%$ in the cases of the "strong 2 -step" PTs.
- With a combination of other signatures (like gravitational wave spectrum), it might be possible to identify whether the multi-step PT occurred or not.

