曲率揺らぎに誘起された重力波

Curvature-induced Gravitational Waves

Probing Early Universe via Gravitational Waves

- Inflation
- Preheating
- Phase transitions
- Curvature perturbations
- Hawking radiation
- Astrophysical sources

•

Image credit: NAOJ

Probing Early Universe via Gravitational Waves

Sources of GWs

- Inflation
- Preheating
- Phase transitions
- Curvature perturbations
- Hawking radiation
- Astrophysical sources

•

Image credit: NAOJ

Curvature-Induced Gravitational Waves

(Scalar-induced GWs, Induced GWs, Second-order GWs, Secondary GWs, ...)

[Ananda, Clarkson, Wands, gr-qc/0612013], [Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290] For reviews, see [Yuan, Huang, 2103.04739], [Domènech, 2109.01398].

$$ds^{2} = -a^{2}(1 + 2\Phi)d\eta^{2} + a^{2}\left((1 - 2\Psi)\delta_{ij} + h_{ij}\right)dx^{i}dx^{j}$$

Gravitational potential Curvature perturbations GW (tensor mode)

(In the absence of anisotropic stress, $\Phi = \Psi$.)

$$h_{\mathbf{k}}^{"} + 2\mathcal{H}h_{\mathbf{k}}^{'} + k^{2}h_{\mathbf{k}} = S_{\mathbf{k}}(\eta) \sim \Phi^{2}$$

Analytic formulae for the integral kernel available: [Espinosa, Racco, Riotto, 1804.07732], [Kohri, <u>Terada</u>, 1804.08577]

Curvature-Induced Gravitational Waves

(Scalar-induced GWs, Induced GWs, Second-order GWs, Secondary GWs, ...)

[Ananda, Clarkson, Wands, gr-qc/0612013], [Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290] For reviews, see [Yuan, Huang, 2103.04739], [Domènech, 2109.01398].

$$ds^{2} = -a^{2}(1 + 2\Phi)d\eta^{2} + a^{2}\left((1 - 2\Psi)\delta_{ij} + h_{ij}\right)dx^{i}dx^{j}$$

Gravitational potential Curvature perturbations GW (tensor mode)

(In the absence of anisotropic stress, $\Phi = \Psi$.)

$$h_{\mathbf{k}}^{"} + 2\mathcal{H}h_{\mathbf{k}}^{'} + k^{2}h_{\mathbf{k}} = S_{\mathbf{k}}(\eta) \sim \Phi^{2}$$

Analytic formulae for the integral kernel available: [Espinosa, Racco, Riotto, 1804.07732], [Kohri, <u>Terada</u>, 1804.08577]

Can the source Φ be sufficiently large?

We know that $\mathscr{P}_{\Phi}(k_{\rm CMB}) \simeq 2.1 \times 10^{-9}$ and $\Omega_{\rm GW} \propto \mathscr{P}_{\Phi}^2$...

Curvature-Induced Gravitational Waves

(Scalar-induced GWs, Induced GWs, Second-order GWs, Secondary GWs, ...)

[Ananda, Clarkson, Wands, gr-qc/0612013], [Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290] For reviews, see [Yuan, Huang, 2103.04739], [Domènech, 2109.01398].

$$ds^{2} = -a^{2}(1 + 2\Phi)d\eta^{2} + a^{2}\left((1 - 2\Psi)\delta_{ij} + h_{ij}\right)dx^{i}dx^{j}$$
Gravitational potential Curvature perturbations GW (tensor mode)

(In the absence of anisotropic stress, $\Phi=\Psi$.)

$$h_{\mathbf{k}}^{"} + 2\mathcal{H}h_{\mathbf{k}}^{'} + k^{2}h_{\mathbf{k}} = S_{\mathbf{k}}(\eta) \sim \Phi^{2}$$

Analytic formulae for the integral kernel available: [Espinosa, Racco, Riotto, 1804.07732], [Kohri, <u>Terada</u>, 1804.08577]

Can the source Φ be sufficiently large?

We know that $\mathscr{P}_{\Phi}(k_{\rm CMB}) \simeq 2.1 \times 10^{-9}$ and $\Omega_{\rm GW} \propto \mathscr{P}_{\Phi}^2 \dots$

1. May be large on smaller scales

2. May be enhanced by "non-standard" cosmological history

[Assadullahi, Wands, 0901.0989], [Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290]

$$\delta(\eta, k) \propto a(\eta)$$

$$\Phi = \text{const.}$$

This makes the source term constant.

$$h_{\mathbf{k}}^{\prime\prime}(\eta) + 2\mathcal{H}h_{\mathbf{k}}^{\prime}(\eta) + k^2 h_{\mathbf{k}}(\eta) = 4S_{\mathbf{k}}(\eta)$$

Constant metric distortion (+ decaying mode)

Propagating GW

[Assadullahi, Wands, 0901.0989], [Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290]

Coherent oscillations of scalar fields: inflaton, moduli, axion, curvaton, etc. Heavy (non-relativistic) matter: gravitino, modulino, PBH, Q-ball, etc.

$$\delta(\eta, k) \propto a(\eta)$$

$$\Phi = \text{const.}$$

This makes the source term constant.

$$h''_{\mathbf{k}}(\eta) + 2\mathcal{H}h'_{\mathbf{k}}(\eta) + k^2 h_{\mathbf{k}}(\eta) = 4S_{\mathbf{k}}(\eta)$$

Constant metric distortion

+ decaying mode)

After MD

Propagating GW

[Assadullahi, Wands, 0901.0989], [Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290]

Coherent oscillations of scalar fields: inflaton, moduli, axion, curvaton, etc. Heavy (non-relativistic) matter: gravitino, modulino, PBH, Q-ball, etc.

$$\delta(\eta, k) \propto a(\eta)$$

$$\Phi = \text{const.}$$

This makes the source term constant.

$$h''_{\mathbf{k}}(\eta) + 2\mathcal{H}h'_{\mathbf{k}}(\eta) + k^2 h_{\mathbf{k}}(\eta) = 4S_{\mathbf{k}}(\eta)$$

Constant metric distortion

(+ decaying mode)

After MD

Propagating GW

[Assadullahi, Wands, 0901.0989], [Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290]

Coherent oscillations of scalar fields: inflaton, moduli, axion, curvaton, etc. Heavy (non-relativistic) matter: gravitino, modulino, PBH, Q-ball, etc.

$$\delta(\eta, k) \propto a(\eta)$$

$$\Phi = \text{const.}$$

This makes the source term constant.

$$h''_{\mathbf{k}}(\eta) + 2\mathcal{H}h'_{\mathbf{k}}(\eta) + k^2 h_{\mathbf{k}}(\eta) = 4S_{\mathbf{k}}(\eta)$$

Constant metric distortion

(+ decaying mode)

After MD

Propagating GW

We find that the conversion efficiency sensitively depends on the time-scale of the reheating transition!

Gradual (Standard) Reheating Transition

(Transition time scale) >> (Period of relevant GW mode)

For the standard perturbative decay,

$$\Phi \sim \delta_{\rm matter} \sim e^{-\Gamma t}$$

even after the matter-radiation equality for a while.

$$\Omega_{\rm GW} \propto \mathcal{P}_h \propto \mathcal{P}_{\Phi}^2 \propto \Phi^4 \propto e^{-4\Gamma t}$$

Enhancement is spoiled significantly.

Sudden Reheating Transition

(Transition time scale) << (Period of relevant GW mode)

Just reproduce the previous results in the literature?

We find that <u>an omitted contribution</u> is actually dominant.

Produced after the MD era.

Sudden Reheating Transition

(Transition time scale) << (Period of relevant GW mode)

Just reproduce the previous results in the literature?

We find that an omitted contribution is actually dominant.

Produced after the MD era.

Huge enhancement is possible.

Origin of the enhancement: $(k/\mathcal{H}_{\text{transition}}) \gg 1$

Interesting interplay between MD and RD eras!

- GWs are induced by fast oscillations of Φ .
- Φ is associated with the sound waves on the thermal bath.
- It is created by the decay of the field dominating in the MD era.

Sudden Reheating Transition

(Transition time scale) << (Period of relevant GW mode)

Just reproduce the previous results in the literature?

We find that <u>an omitted contribution</u> is actually dominant.

Produced after the MD era.

Huge enhancement is possible.

Origin of the enhancement: $(k/\mathcal{H}_{\text{transition}}) \gg 1$

Interesting interplay between MD and RD eras!

- GWs are induced by fast oscillations of Φ .
- Φ is associated with the sound waves on the thermal bath.
- It is created by the decay of the field dominating in the MD era.

Poltergeist

mechanism for gravitational wave production

Triggeron dynamics (scalar-fields toy model)

[Inomata, Kohri, Nakama, <u>Terada</u>, 1904.12879]

$$V = \frac{1}{2}M^2\phi^2 + \frac{1}{2}m^2\tau^2 + \boxed{\frac{1}{4}\lambda\tau^2\chi^2} + \frac{c}{2}M\phi\chi^2$$

 T-dependent mass of

PBH domination scenario (narrow mass function)

[Inomata, Kawasaki, Mukaida, Terada, Yanagida, 2003.10455

$$M \propto (t_{\rm evp} - t)^{1/3}$$

Poltergeist

mechanism for gravitational wave production

Triggeron dynamics (scalar-fields toy model)

[Inomata, Kohri, Nakama, Terada, 1904.12879]

$$V = \frac{1}{2}M^2\phi^2 + \frac{1}{2}m^2\tau^2 + \boxed{\frac{1}{4}\lambda\tau^2\chi^2} + \frac{c}{2}M\phi\chi^2$$

 T-dependent mass of \mathbf{x}

 $M \propto (t_{\rm evp} - t)^{1/3}$

• PBH domination scenario (narrow mass function)

[Inomata, Kawasaki, Mukaida, Terada, Yanagida, 2003.10455]

Sudden transition due to evaporation $\frac{\delta n_{\rm PBH}}{\Delta t_{\rm res} - t} \propto a$

 n_{PBH}

Sound waves in thermal bath

Fast oscillation of Φ_k

(Resonant) production of 2nd-order GWs

Summary

- Curvature-induced gravitational waves (GWs) can probe
 - small-scale perturbations
 (information on inflaton potential away from the CMB scale; relevant for PBH scenarios)

[Saito, Yokoyama, 0812.4339; 0912.5317]

- dynamics of reheating transition as well as reheating temperature
- The strength of the induced GWs in a scenario with an early MD era sensitively depends on the time scale of the reheating transition.
 - In the standard case, the enhancement effect previously estimated in the literature is lost
 - In the sudden-transition case, the Poltergeist mechanism can lead to strong GW signals
 that can be observed by LISA, DECIGO, BBO, etc.

Summary

- Curvature-induced gravitational waves (GWs) can probe
 - small-scale perturbations
 (information on inflaton potential away from the CMB scale; relevant for PBH scenarios)

[Saito, Yokoyama, 0812.4339; 0912.5317]

- dynamics of reheating transition as well as reheating temperature
- The strength of the induced GWs in a scenario with an early MD era sensitively depends on the time scale of the reheating transition.
 - In the standard case, the enhancement effect previously estimated in the literature is lost.
 - In the sudden-transition case, the Poltergeist mechanism can lead to strong GW signals that can be observed by LISA, DECIGO, BBO, etc.